Example: Fruit baskets

Example. In how many ways we can create a fruit basket with \(n \) pieces of fruit, where we have an infinite supply of apples and bananas, with the added constraints:
Example: Fruit baskets

Example. In how many ways we can create a fruit basket with n pieces of fruit, where we have an infinite supply of apples and bananas, with the added constraints:

- The number of apples is even.
- The number of bananas is a multiple of five.
- The number of oranges is at most four.
- The number of pears is zero or one.
Example: Fruit baskets

Example. In how many ways can we create a fruit basket with n pieces of fruit, where we have an infinite supply of apples and bananas, with the added constraints:

- The number of apples is even.
- The number of bananas is a multiple of five.
- The number of oranges is at most four.
- The number of pears is zero or one.

Strategy. Write down a power series for each piece of fruit, multiply them together, and extract the coefficient of x^k.
Example: Rolling dice

Example. When two standard six-sided dice are rolled, what is the distribution of the sums that appear?

Solution. The generating function for one die is $D(x) =$
Example: Rolling dice

Example. When two standard six-sided dice are rolled, what is the distribution of the sums that appear?

Solution. The generating function for one die is $D(x) =$ Therefore, the distribution of sums for rolling two dice is
Example: Rolling dice

Example. When two standard six-sided dice are rolled, what is the distribution of the sums that appear?

Solution. The generating function for one die is \(D(x) = \) Therefore, the distribution of sums for rolling two dice is

What does \(D(1) \) count?

Example. Is it possible to relabel two six-sided dice differently to give the exact same distribution of sums?
Example: Rolling dice

Example. When two standard six-sided dice are rolled, what is the distribution of the sums that appear?

Solution. The generating function for one die is $D(x) =$

Therefore, the distribution of sums for rolling two dice is

What does $D(1)$ count?

Example. Is it possible to relabel two six-sided dice differently to give the exact same distribution of sums?

Solution. Find two generating functions $F(x)$ and $G(x)$ such that $F(x)G(x) = D^2(x)$ and $F(1) = G(1) = 6.$
Example: Rolling dice

Example. When two standard six-sided dice are rolled, what is the distribution of the sums that appear?

Solution. The generating function for one die is $D(x) = \cdots$ Therefore, the distribution of sums for rolling two dice is \cdots

What does $D(1)$ count?

Example. Is it possible to relabel two six-sided dice differently to give the exact same distribution of sums?

Solution. Find two generating functions $F(x)$ and $G(x)$ such that $F(x)G(x) = D^2(x)$ and $F(1) = G(1) = 6$. Rearrange the factors: $D(x)^2 = x^2(1 + x)^2(1 − x + x^2)^2(1 + x + x^2)^2$.
Example: Rolling dice

Example. When two standard six-sided dice are rolled, what is the distribution of the sums that appear?

Solution. The generating function for one die is \(D(x) = \)

Therefore, the distribution of sums for rolling two dice is

What does \(D(1) \) count?

Example. Is it possible to relabel two six-sided dice differently to give the exact same distribution of sums?

Solution. Find two generating functions \(F(x) \) and \(G(x) \) such that

\[
F(x)G(x) = D^2(x) \quad \text{and} \quad F(1) = G(1) = 6.
\]

Rearrange the factors:

\[
D(x)^2 = x^2 (1 + x)^2 (1 - x + x^2)^2 (1 + x + x^2)^2.
\]

\[
= [x(1 + x)(1 + x + x^2)] \cdot [x(1 - x + x^2)^2(1 + x)(1 + x + x^2)]
\]
Example: Rolling dice

Example. When two standard six-sided dice are rolled, what is the distribution of the sums that appear?

Solution. The generating function for one die is \(D(x) = \)
Therefore, the distribution of sums for rolling two dice is

What does \(D(1) \) count?

Example. Is it possible to relabel two six-sided dice differently to give the exact same distribution of sums?

Solution. Find two generating functions \(F(x) \) and \(G(x) \) such that \(F(x)G(x) = D^2(x) \) and \(F(1) = G(1) = 6 \). Rearrange the factors:

\[
D(x)^2 = x^2(1 + x)^2(1 - x + x^2)^2(1 + x + x^2)^2.
\]

\[
= [x(1 + x)(1 + x + x^2)] \cdot [x(1 - x + x^2)^2(1 + x)(1 + x + x^2)]
\]

\[
= [x + 2x^2 + 2x^3 + x^4] \cdot [x + x^3 + x^4 + x^5 + x^6 + x^8]
\]
Example: Rolling dice

Example. When two standard six-sided dice are rolled, what is the distribution of the sums that appear?

Solution. The generating function for one die is \(D(x) = \)

Therefore, the distribution of sums for rolling two dice is

What does \(D(1) \) count?

Example. Is it possible to relabel two six-sided dice differently to give the exact same distribution of sums?

Solution. Find two generating functions \(F(x) \) and \(G(x) \) such that \(F(x)G(x) = D^2(x) \) and \(F(1) = G(1) = 6 \). Rearrange the factors:

\[
D(x)^2 = x^2(1 + x)^2(1 - x + x^2)^2(1 + x + x^2)^2.
\]

\[
= [x(1 + x)(1 + x + x^2)] \cdot [x(1 - x + x^2)^2(1 + x)(1 + x + x^2)]
\]

\[
= [x + 2x^2 + 2x^3 + x^4] \cdot [x + x^3 + x^4 + x^5 + x^6 + x^8]
\]

Die \(F: \{1, 2, 2, 3, 3, 4\} \) and die \(G: \{1, 3, 4, 5, 6, 8\} \)
Example. Determine a formula for the entries of the sequence \(\{a_k\}_{k \geq 0} \) that satisfies \(a_0 = 0 \) and the recurrence \(a_{k+1} = 2a_k + 1 \) for \(k \geq 0 \).
Example. Determine a formula for the entries of the sequence \(\{a_k\}_{k \geq 0} \) that satisfies \(a_0 = 0 \) and the recurrence \(a_{k+1} = 2a_k + 1 \) for \(k \geq 0 \).

Solution. Use generating functions: define \(A(x) = \sum_{k \geq 0} a_k x^k \).

Step 1: Multiply both sides of the recurrence by \(x^{k+1} \) and sum over all \(k \):

\[
\sum_{k \geq 0} a_{k+1} x^{k+1} = \sum_{k \geq 0} (2a_k + 1) x^{k+1}
\]
Solving recurrence relations

Example. Determine a formula for the entries of the sequence \(\{a_k\}_{k \geq 0} \) that satisfies \(a_0 = 0 \) and the recurrence \(a_{k+1} = 2a_k + 1 \) for \(k \geq 0 \).

Solution. Use generating functions: define \(A(x) = \sum_{k \geq 0} a_k x^k \).

Step 1: Multiply both sides of the recurrence by \(x^{k+1} \) and sum over all \(k \):

\[
\sum_{k \geq 0} a_{k+1} x^{k+1} = \sum_{k \geq 0} (2a_k + 1) x^{k+1}
\]

Step 2: Massage the sums to find copies of \(A(x) \).
LHS: Re-index, find missing term; RHS: separate into pieces.

\[
\sum_{k \geq 1} a_k x^k = \sum_{k \geq 0} 2a_k x^{k+1} + \sum_{k \geq 0} x^{k+1}
\]

Conversion to functions of \(A(x) \):
Step 3: Solve for the compact form of $A(x)$.

$$A(x) = \frac{x}{(1 - 2x)(1 - x)}$$
Solving recurrence relations

Step 3: Solve for the compact form of \(A(x) \).

\[
A(x) = \frac{x}{(1 - 2x)(1 - x)}
\]

Step 4: Extract the coefficients.

When the degree of the numerator is smaller than the degree of the denominator, we can use partial fractions to determine an expression for \(A(x) \) of the form:

\[
A(x) = \frac{C_1}{1 - 2x} + \frac{C_2}{1 - x}
\]

Solving gives \(A(x) = \frac{1}{1 - 2x} + \frac{-1}{1 - x} \); each of which can be expanded:
Solving recurrence relations

Step 3: Solve for the compact form of \(A(x) \).

\[
A(x) = \frac{x}{(1 - 2x)(1 - x)}
\]

Step 4: Extract the coefficients.

When the degree of the numerator is smaller than the degree of the denominator, we can use partial fractions to determine an expression for \(A(x) \) of the form:

\[
A(x) = \frac{C_1}{1 - 2x} + \frac{C_2}{1 - x}
\]

Solving gives \(A(x) = \frac{1}{1 - 2x} + \frac{-1}{1 - x} \); each of which can be expanded:

\[
A(x) = \sum_{k \geq 0} 2^k x^k + \sum_{k \geq 0} (-1) x^k = \sum_{k \geq 0} (2^k - 1) x^k
\]

Therefore, \(a_k = 2^k - 1 \).
A closed form for Fibonacci numbers

Example. Solve the recurrence relation $f_{k+2} = f_{k+1} + f_k$ with initial conditions $f_0 = 0$ and $f_1 = 1$.
Example. Solve the recurrence relation $f_{k+2} = f_{k+1} + f_k$ with initial conditions $f_0 = 0$ and $f_1 = 1$.

Solution. Define $F(x) = \sum_{k \geq 0} f_k x^k$. Then,
A closed form for Fibonacci numbers

Example. Solve the recurrence relation $f_{k+2} = f_{k+1} + f_k$ with initial conditions $f_0 = 0$ and $f_1 = 1$.

Solution. Define $F(x) = \sum_{k \geq 0} f_k x^k$. Then,

$$\sum_{k \geq 0} f_{k+2} x^{k+2} = \sum_{k \geq 0} (f_{k+1} + f_k) x^{k+2}$$

$$\sum_{k \geq 0} f_{k+2} x^{k+2} = \sum_{k \geq 0} f_{k+1} x^{k+2} + \sum_{k \geq 0} f_k x^{k+2}$$

$$\sum_{k \geq 0} f_{k+2} x^{k+2} = x \sum_{k \geq 0} f_{k+1} x^{k+1} + x^2 \sum_{k \geq 0} f_k x^k$$

$$\sum_{k \geq 0} f_k x^k = x \sum_{k \geq 1} f_k x^k + x^2 \sum_{k \geq 0} f_k x^k$$
A closed form for Fibonacci numbers

Example. Solve the recurrence relation $f_{k+2} = f_{k+1} + f_k$ with initial conditions $f_0 = 0$ and $f_1 = 1$.

Solution. Define $F(x) = \sum_{k \geq 0} f_k x^k$. Then,

$$\sum_{k \geq 0} f_{k+2} x^{k+2} = \sum_{k \geq 0} (f_{k+1} + f_k) x^{k+2}$$

$$\sum_{k \geq 0} f_{k+2} x^{k+2} = \sum_{k \geq 0} f_{k+1} x^{k+2} + \sum_{k \geq 0} f_k x^{k+2}$$

$$\sum_{k \geq 0} f_{k+2} x^{k+2} = x \sum_{k \geq 0} f_{k+1} x^{k+1} + x^2 \sum_{k \geq 0} f_k x^k$$

$$\sum_{k \geq 2} f_k x^k = x \sum_{k \geq 1} f_k x^k + x^2 \sum_{k \geq 0} f_k x^k$$

Therefore, $F(x) - x - 0 = x(F(x) - 0) + x^2 F(x)$, so

$$F(x) = \frac{x}{1 - x - x^2}$$
A closed form for Fibonacci numbers

So the Fibonacci numbers have generating function $x/(1 - x - x^2)$. The roots of $(1 - x - x^2) = (1 - r_+x)(1 - r_-x)$ are $r_\pm = (1 \pm \sqrt{5})/2$.
A closed form for Fibonacci numbers

So the Fibonacci numbers have generating function \(x/(1 - x - x^2) \). The roots of \((1 - x - x^2) = (1 - r_+x)(1 - r_-x) \) are \(r_\pm = (1 \pm \sqrt{5})/2 \). Using partial fractions,

\[
F(x) = \frac{1}{\sqrt{5}} \frac{1}{1 - r_+x} - \frac{1}{\sqrt{5}} \frac{1}{1 - r_-x}
\]
A closed form for Fibonacci numbers

So the Fibonacci numbers have generating function \(x/(1 - x - x^2) \).
The roots of \((1 - x - x^2) = (1 - r_+x)(1 - r_-x)\) are \(r_{\pm} = (1 \pm \sqrt{5})/2 \).
Using partial fractions,

\[
F(x) = \frac{1}{\sqrt{5}} \frac{1}{1 - r_+x} - \frac{1}{\sqrt{5}} \frac{1}{1 - r_-x}
\]

Therefore,

\[
\sum_{k \geq 0} f_k x^k = \sum_{k \geq 0} \frac{1}{\sqrt{5}} \left(\frac{1 + \sqrt{5}}{2} \right)^k x^k - \sum_{k \geq 0} \frac{1}{\sqrt{5}} \left(\frac{1 - \sqrt{5}}{2} \right)^k x^k
\]
A closed form for Fibonacci numbers

So the Fibonacci numbers have generating function \(x/(1 - x - x^2) \). The roots of \((1 - x - x^2) = (1 - r_+x)(1 - r_-x)\) are \(r_\pm = (1 \pm \sqrt{5})/2 \). Using partial fractions,

\[
F(x) = \frac{1}{\sqrt{5}} \frac{1}{1 - r_+x} - \frac{1}{\sqrt{5}} \frac{1}{1 - r_-x}
\]

Therefore,

\[
\sum_{k \geq 0} f_k x^k = \sum_{k \geq 0} \frac{1}{\sqrt{5}} \left(\frac{1 + \sqrt{5}}{2} \right)^k x^k - \sum_{k \geq 0} \frac{1}{\sqrt{5}} \left(\frac{1 - \sqrt{5}}{2} \right)^k x^k
\]

and we conclude that

\[
f_k = \frac{1}{\sqrt{5}} \left(\frac{1 + \sqrt{5}}{2} \right)^k - \frac{1}{\sqrt{5}} \left(\frac{1 - \sqrt{5}}{2} \right)^k.
\]
A closed form for Fibonacci numbers

So the Fibonacci numbers have generating function $x/(1 - x - x^2)$. The roots of $(1 - x - x^2) = (1 - r_+x)(1 - r_-x)$ are $r_\pm = (1 \pm \sqrt{5})/2$. Using partial fractions,

$$F(x) = \frac{1}{\sqrt{5}} \frac{1}{1 - r_+x} - \frac{1}{\sqrt{5}} \frac{1}{1 - r_-x}$$

Therefore,

$$\sum_{k \geq 0} f_k x^k = \sum_{k \geq 0} \frac{1}{\sqrt{5}} \left(\frac{1 + \sqrt{5}}{2} \right)^k x^k - \sum_{k \geq 0} \frac{1}{\sqrt{5}} \left(\frac{1 - \sqrt{5}}{2} \right)^k x^k$$

and we conclude that $f_k = \frac{1}{\sqrt{5}} \left(\frac{1 + \sqrt{5}}{2} \right)^k - \frac{1}{\sqrt{5}} \left(\frac{1 - \sqrt{5}}{2} \right)^k$.

As $k \rightarrow +\infty$, the second term goes to zero, so $f_k \approx \frac{1}{\sqrt{5}} \left(\frac{1 + \sqrt{5}}{2} \right)^k$.

A closed form for Fibonacci numbers

So the Fibonacci numbers have generating function \(x/(1 - x - x^2) \). The roots of \((1 - x - x^2) = (1 - r_+x)(1 - r_-x)\) are \(r_\pm = (1 \pm \sqrt{5})/2 \). Using partial fractions,

\[
F(x) = \frac{1}{\sqrt{5}} \frac{1}{1 - r_+x} - \frac{1}{\sqrt{5}} \frac{1}{1 - r_-x}
\]

Therefore, \(\sum_{k \geq 0} f_k x^k = \sum_{k \geq 0} \frac{1}{\sqrt{5}} \left(\frac{1 + \sqrt{5}}{2} \right)^k x^k - \sum_{k \geq 0} \frac{1}{\sqrt{5}} \left(\frac{1 - \sqrt{5}}{2} \right)^k x^k \)

and we conclude that \(f_k = \frac{1}{\sqrt{5}} \left(\frac{1 + \sqrt{5}}{2} \right)^k - \frac{1}{\sqrt{5}} \left(\frac{1 - \sqrt{5}}{2} \right)^k \).

As \(k \to +\infty \), the second term goes to zero, so \(f_k \approx \frac{1}{\sqrt{5}} \left(\frac{1 + \sqrt{5}}{2} \right)^k \).

Practicality: \((1 + \sqrt{5})/2 \approx 1.61803\) and 1 mi \(\approx 1.609344 \) km
Solving recurrence relations with repeated roots

With repeated roots in the denominator, the result is not quite as nice.

Example. Find the partial fraction decomposition of \(\frac{x}{(1-2x)^2(1+5x)} \).

Since \((1 - 2x)^2 \) is a repeated root,

\[
\frac{x}{(1-2x)^2(1+5x)} = \frac{A}{1-2x} + \frac{B}{(1-2x)^2} + \frac{C}{1+5x}.
\]
Solving recurrence relations with repeated roots

With repeated roots in the denominator, the result is not quite as nice.

Example. Find the partial fraction decomposition of \(\frac{x}{(1-2x)^2(1+5x)} \).

Since \((1 - 2x)^2\) is a repeated root,

\[
\frac{x}{(1 - 2x)^2(1 + 5x)} = \frac{A}{(1 - 2x)} + \frac{B}{(1 - 2x)^2} + \frac{C}{(1 + 5x)}.
\]

Clearing the denominator gives:

\[
x = A(1 - 2x)(1 + 5x) + B(1 + 5x) + C(1 - 2x)^2.
\]

When \(x = \frac{1}{2}, \) \(\frac{1}{2} = 0 + B(1 + \frac{5}{2}) + 0; \) so \(B = \frac{1}{7}. \)

When \(x = -\frac{1}{5}, \) \(-\frac{1}{5} = 0 + 0 + C(1 + \frac{2}{5})^2; \) so \(C = \frac{-5}{49}. \)
Solving recurrence relations with repeated roots

With repeated roots in the denominator, the result is not quite as nice.

Example. Find the partial fraction decomposition of \(\frac{x}{(1-2x)^2(1+5x)} \).

Since \((1 - 2x)^2\) is a repeated root,

\[
\frac{x}{(1 - 2x)^2(1 + 5x)} = \frac{A}{(1 - 2x)} + \frac{B}{(1 - 2x)^2} + \frac{C}{(1 + 5x)}.
\]

Clearing the denominator gives:

\[
x = A(1 - 2x)(1 + 5x) + B(1 + 5x) + C(1 - 2x)^2.
\]

When \(x = \frac{1}{2}\), \(\frac{1}{2} = 0 + B(1 + \frac{5}{2}) + 0\); so \(B = \frac{1}{7}\).

When \(x = -\frac{1}{5}\), \(-\frac{1}{5} = 0 + 0 + C(1 + \frac{2}{5})^2\); so \(C = \frac{-5}{49}\).

Equating the coefficients of \(x^0\), we see \(A + B + C = 0\). We conclude \(A = \frac{-2}{49}\).
Solving recurrence relations with repeated roots

With repeated roots in the denominator, the result is not quite as nice.

Example. Find the partial fraction decomposition of \(\frac{x}{(1-2x)^2(1+5x)} \).

Since \((1 - 2x)^2\) is a repeated root,

\[
\frac{x}{(1 - 2x)^2(1 + 5x)} = \frac{A}{(1 - 2x)} + \frac{B}{(1 - 2x)^2} + \frac{C}{(1 + 5x)}.
\]

Clearing the denominator gives:

\[
x = A(1 - 2x)(1 + 5x) + B(1 + 5x) + C(1 - 2x)^2.
\]

When \(x = \frac{1}{2} \), \(\frac{1}{2} = 0 + B \left(1 + \frac{5}{2}\right) + 0 \); so \(B = \frac{1}{7} \).

When \(x = -\frac{1}{5} \), \(-\frac{1}{5} = 0 + 0 + C \left(1 + \frac{2}{5}\right)^2 \); so \(C = \frac{-5}{49} \).

Equating the coefficients of \(x^0 \), we see \(A + B + C = 0 \). We conclude \(A = \frac{-2}{49} \).

\[
\frac{x}{(1 - 2x)^2(1 + 5x)} = \frac{-2}{49} + \frac{7}{49} + \frac{-5}{49}.
\]
Example. Let \(\{h_k\}_{k \geq 0} \) be a sequence satisfying

\[
h_k + h_{k-1} - 16h_{k-2} + 20h_{k-3} = 0,
\]

with initial conditions \(h_0 = 1 \), \(h_1 = 1 \), and \(h_2 = -1 \).
Solving recurrence relations with repeated roots

Example. Let \(\{h_k\}_{k \geq 0} \) be a sequence satisfying

\[
h_k + h_{k-1} - 16h_{k-2} + 20h_{k-3} = 0,
\]

with initial conditions \(h_0 = 1, \ h_1 = 1, \) and \(h_2 = -1. \)

Find the generating function and formula for \(h_k. \)

\[
h(x) = h_0 + h_1x + h_2x^2 + h_3x^3 + \cdots + h_kx^k + \cdots,
\]

\[
+ xh(x) = h_0x + h_1x^2 + h_2x^3 + \cdots + h_{k-1}x^k + \cdots,
\]

\[
- 16x^2 h(x) = -16h_0x^2 - 16h_1x^3 + \cdots - 16h_{k-2}x^k + \cdots,
\]

\[
+ 20x^3 h(x) = 20h_0x^3 + \cdots + 20h_{k-3}x^k + \cdots,
\]
Solving recurrence relations with repeated roots

Example. Let \(\{h_k\}_{k \geq 0} \) be a sequence satisfying

\[
 h_k + h_{k-1} - 16h_{k-2} + 20h_{k-3} = 0,
\]

with initial conditions \(h_0 = 1, \ h_1 = 1, \) and \(h_2 = -1. \)

Find the generating function and formula for \(h_k. \)

\[
 h(x) = h_0 + h_1 x + h_2 x^2 + h_3 x^3 + \cdots + h_k x^k + \cdots,
\]

\[
 + x h(x) = h_0 x + h_1 x^2 + h_2 x^3 + \cdots + h_{k-1} x^k + \cdots,
\]

\[
 - 16 x^2 h(x) = -16 h_0 x^2 - 16 h_1 x^3 + \cdots - 16 h_{k-2} x^k + \cdots,
\]

\[
 + 20 x^3 h(x) = 20 h_0 x^3 + \cdots + 20 h_{k-3} x^k + \cdots,
\]

Therefore, \(h(x) = \)
Example. Let \(\{h_k\}_{k \geq 0} \) be a sequence satisfying
\[
h_k + h_{k-1} - 16h_{k-2} + 20h_{k-3} = 0,
\]
with initial conditions \(h_0 = 1 \), \(h_1 = 1 \), and \(h_2 = -1 \).
Find the generating function and formula for \(h_k \).

\[
\begin{align*}
h(x) &= h_0 + h_1 x + h_2 x^2 + h_3 x^3 + \cdots + h_k x^k + \cdots, \\
+xh(x) &= h_0 x + h_1 x^2 + h_2 x^3 + \cdots + h_{k-1} x^k + \cdots, \\
-16x^2 h(x) &= -16h_0 x^2 - 16h_1 x^3 + \cdots - 16h_{k-2} x^k + \cdots, \\
+20x^3 h(x) &= 20h_0 x^3 + \cdots + 20h_{k-3} x^k + \cdots,
\end{align*}
\]

Therefore, \(h(x) = \)

Since \(\frac{1}{(1-y)^m} = \sum_{k \geq 0} \binom{m}{k} y^k \),
we see \(\frac{1}{(1-2x)^2} = \sum_{k \geq 0} \binom{2}{k} (2x)^k \).
Solving recurrence relations with repeated roots

Example. Let \(\{h_k\}_{k \geq 0} \) be a sequence satisfying

\[
h_k + h_{k-1} - 16h_{k-2} + 20h_{k-3} = 0,
\]

with initial conditions \(h_0 = 1, h_1 = 1, \) and \(h_2 = -1. \)
Find the generating function and formula for \(h_k. \)

\[
h(x) = h_0 + h_1x + h_2x^2 + h_3x^3 + \cdots + h_kx^k + \cdots,
\]

\[
+xh(x) = h_0x + h_1x^2 + h_2x^3 + \cdots + h_{k-1}x^k + \cdots,
\]

\[
-16x^2h(x) = -16h_0x^2 - 16h_1x^3 + \cdots - 16h_{k-2}x^k + \cdots,
\]

\[
+20x^3h(x) = 20h_0x^3 + \cdots + 20h_{k-3}x^k + \cdots,
\]

Therefore, \(h(x) = \)

Since \(\frac{1}{(1-y)^m} = \sum_{k \geq 0} \binom{m}{k} y^k, \)

we see \(\frac{1}{(1-2x)^2} = \sum_{k \geq 0} \binom{k+1}{k} (2x)^k \)
Solving recurrence relations with repeated roots

Example. Let \(\{h_k\}_{k \geq 0} \) be a sequence satisfying

\[
h_k + h_{k-1} - 16h_{k-2} + 20h_{k-3} = 0,
\]

with initial conditions \(h_0 = 1, \ h_1 = 1, \) and \(h_2 = -1. \)

Find the generating function and formula for \(h_k. \)

\[
h(x) = h_0 + h_1x + h_2x^2 + h_3x^3 + \cdots + h_kx^k + \cdots,
\]

\[
+ xh(x) = h_0x + h_1x^2 + h_2x^3 + \cdots + h_{k-1}x^k + \cdots,
\]

\[
-16x^2h(x) = -16h_0x^2 - 16h_1x^3 + \cdots - 16h_{k-2}x^k + \cdots,
\]

\[
+ 20x^3h(x) = 20h_0x^3 + \cdots + 20h_{k-3}x^k + \cdots,
\]

Therefore, \(h(x) = \)

Since \(\frac{1}{(1-y)^m} = \sum \binom{m}{k} y^k, \)

we see \(\frac{1}{(1-2x)^2} = \sum \binom{k+1}{k}(2x)^k = \sum (k+1)2^kx^k. \)

We conclude that \(h_k = \)