Example. Suppose that in this class, 14 students play soccer and 11 students play basketball. How many students play a sport?

Solution.
Example. Suppose that in this class, 14 students play soccer and 11 students play basketball. How many students play a sport?

Solution.

Let S be the set of students who play soccer and B be the set of students who play basketball. Then, $|S \cup B| = |S| + |B|$.

\[
\begin{array}{c}
\text{Set } S \\
\cap \\
\text{Set } B
\end{array}
\]
Principle of Inclusion-Exclusion

When \(A = A_1 \cup \cdots \cup A_k \subset \mathcal{U} \) (\(\mathcal{U} \) for universe) and the sets \(A_i \) are pairwise disjoint, we have \(|A| = |A_1| + \cdots + |A_k| \).
Principle of Inclusion-Exclusion

When $A = A_1 \cup \cdots \cup A_k \subset \mathcal{U}$ (\mathcal{U} for universe) and the sets A_i are pairwise disjoint, we have $|A| = |A_1| + \cdots + |A_k|$.

When $A = A_1 \cup \cdots \cup A_k \subset \mathcal{U}$ and the A_i are not pairwise disjoint, we must apply the principle of inclusion-exclusion to determine $|A|$:
When $A = A_1 \cup \cdots \cup A_k \subset U$ (U for universe) and the sets A_i are pairwise disjoint, we have $|A| = |A_1| + \cdots + |A_k|$.

When $A = A_1 \cup \cdots \cup A_k \subset U$ and the A_i are not pairwise disjoint, we must apply the principle of inclusion-exclusion to determine $|A|$:

$$|A_1 \cup A_2| = |A_1| + |A_2| - |A_1 \cap A_2|$$
Principle of Inclusion-Exclusion

When \(A = A_1 \cup \cdots \cup A_k \subset \mathcal{U} \) (\(\mathcal{U} \) for universe) and the sets \(A_i \) are \textit{pairwise disjoint}, we have \(|A| = |A_1| + \cdots + |A_k| \).

When \(A = A_1 \cup \cdots \cup A_k \subset \mathcal{U} \) and the \(A_i \) are \textbf{not} pairwise disjoint, we must apply the \textit{principle of inclusion-exclusion} to determine \(|A| \):

\[
|A_1 \cup A_2| = |A_1| + |A_2| - |A_1 \cap A_2|
\]
Principle of Inclusion-Exclusion

When $A = A_1 \cup \cdots \cup A_k \subset \mathcal{U}$ (\mathcal{U} for universe) and the sets A_i are
pairwise disjoint, we have $|A| = |A_1| + \cdots + |A_k|$.

When $A = A_1 \cup \cdots \cup A_k \subset \mathcal{U}$ and the A_i are not pairwise disjoint, we must apply the principle of inclusion-exclusion to determine $|A|:

\begin{align*}
|A_1 \cup A_2| &= |A_1| + |A_2| - |A_1 \cap A_2| \\
|A_1 \cup A_2 \cup A_3| &= |A_1| + |A_2| + |A_3| - |A_1 \cap A_2| - |A_1 \cap A_3| \\
&\quad - |A_2 \cap A_3| + |A_1 \cap A_2 \cap A_3| \\
|A_1 \cup \cdots \cup A_m| &= \sum |A_i| - \sum |A_i \cap A_j| + \sum |A_i \cap A_j \cap A_k| \cdots
\end{align*}
Principle of Inclusion-Exclusion

When \(A = A_1 \cup \cdots \cup A_k \subset \mathcal{U} \) (\(\mathcal{U} \) for universe) and the sets \(A_i \) are *pairwise disjoint*, we have \(|A| = |A_1| + \cdots + |A_k|\).

When \(A = A_1 \cup \cdots \cup A_k \subset \mathcal{U} \) and the \(A_i \) are *not* pairwise disjoint, we must apply the principle of inclusion-exclusion to determine \(|A|\):

\[
|A_1 \cup A_2| = |A_1| + |A_2| - |A_1 \cap A_2|
\]

\[
|A_1 \cup A_2 \cup A_3| = |A_1| + |A_2| + |A_3| - |A_1 \cap A_2| - |A_1 \cap A_3|
\]

\[
- |A_2 \cap A_3| + |A_1 \cap A_2 \cap A_3|
\]

\[
|A_1 \cup \cdots \cup A_m| = \sum |A_i| - \sum |A_i \cap A_j| + \sum |A_i \cap A_j \cap A_k| \cdots
\]

It may be more convenient to apply inclusion/exclusion where the \(A_i \) are *forbidden* subsets of \(\mathcal{U} \), in which case ________________.
mmm. ...PIE

The key to using the principle of inclusion-exclusion is determining the right choice of A_i. The A_i and their intersections should be easy to count and easy to characterize.
The key to using the principle of inclusion-exclusion is determining the right choice of A_i. The A_i and their intersections should be easy to count and easy to characterize.

Notation: $\pi = p_1p_2\cdots p_n$ is the one-line notation for a permutation of $[n]$ whose first element is p_1, second element is p_2, etc.

Example. How many permutations $\pi = p_1p_2\cdots p_n$ are there in which at least one of p_1 and p_2 are even?
The key to using the principle of inclusion-exclusion is determining the right choice of A_i. The A_i and their intersections should be easy to count and easy to characterize.

Notation: $\pi = p_1p_2 \cdots p_n$ is the one-line notation for a permutation of $[n]$ whose first element is p_1, second element is p_2, etc.

Example. How many permutations $p = p_1p_2 \cdots p_n$ are there in which at least one of p_1 and p_2 are even?

Solution. Let U be the set of n-permutations. Let A_1 be the set of permutations where p_1 is even. Let A_2 be the set of permutations where p_2 is even.

In words, $A_1 \cap A_2$ is the set of n-permutations _________________
The key to using the principle of inclusion-exclusion is determining the right choice of A_i. The A_i and their intersections should be easy to count and easy to characterize.

Notation: $\pi = p_1p_2 \cdots p_n$ is the one-line notation for a permutation of $[n]$ whose first element is p_1, second element is p_2, etc.

Example. How many permutations $p = p_1p_2 \cdots p_n$ are there in which at least one of p_1 and p_2 are even?

Solution. Let \mathcal{U} be the set of n-permutations.
Let A_1 be the set of permutations where p_1 is even.
Let A_2 be the set of permutations where p_2 is even.
In words, $A_1 \cap A_2$ is the set of n-permutations ________________

Now calculate: $|A_1| =$ $|A_2| =$ $|A_1 \cap A_2| =$
The key to using the principle of inclusion-exclusion is determining the right choice of A_i. The A_i and their intersections should be easy to count and easy to characterize.

Notation: $\pi = p_1p_2 \cdots p_n$ is the one-line notation for a permutation of $[n]$ whose first element is p_1, second element is p_2, etc.

Example. How many permutations $p = p_1p_2 \cdots p_n$ are there in which at least one of p_1 and p_2 are even?

Solution. Let \mathcal{U} be the set of n-permutations.
Let A_1 be the set of permutations where p_1 is even.
Let A_2 be the set of permutations where p_2 is even.
In words, $A_1 \cap A_2$ is the set of n-permutations

Now calculate: $|A_1| = \quad |A_2| =

|A_1 \cap A_2| =

Applying PIE: So $|A_1 \cup A_2| =$
Example. Find the number of integers between 1 and 1000 that are not divisible by 5, 6, or 8.
Example. Find the number of integers between 1 and 1000 that are not divisible by 5, 6, or 8.

Solution. Let $\mathcal{U} = \{ n \in \mathbb{Z} \text{ such that } 1 \leq n \leq 1000 \}$.
Let $A_1 \subset \mathcal{U}$ be the multiples of 5, $A_2 \subset \mathcal{U}$ be the multiples of 6, and $A_3 \subset \mathcal{U}$ be the multiples of 8. We want $|\mathcal{U}| - |A_1 \cup A_2 \cup A_3|$.

PIE

mmm...
Example. Find the number of integers between 1 and 1000 that are not divisible by 5, 6, or 8.

Solution. Let $U = \{n \in \mathbb{Z} \text{ such that } 1 \leq n \leq 1000\}$. Let $A_1 \subset U$ be the multiples of 5, $A_2 \subset U$ be the multiples of 6, and $A_3 \subset U$ be the multiples of 8. We want $|U| - |A_1 \cup A_2 \cup A_3|$.

In words, $A_1 \cap A_2$ is the set of integers
Example. Find the number of integers between 1 and 1000 that are not divisible by 5, 6, or 8.

Solution. Let \(\mathcal{U} = \{ n \in \mathbb{Z} \text{ such that } 1 \leq n \leq 1000 \} \).
Let \(A_1 \subset \mathcal{U} \) be the multiples of 5, \(A_2 \subset \mathcal{U} \) be the multiples of 6, and \(A_3 \subset \mathcal{U} \) be the multiples of 8. We want \(|\mathcal{U}| - |A_1 \cup A_2 \cup A_3| \).

In words, \(A_1 \cap A_2 \) is the set of integers
\(A_1 \cap A_3 \) is \(A_2 \cap A_3 \) is
and \(A_1 \cap A_2 \cap A_3 \) is the set of integers that are
Example. Find the number of integers between 1 and 1000 that are not divisible by 5, 6, or 8.

Solution. Let $\mathcal{U} = \{n \in \mathbb{Z} \text{ such that } 1 \leq n \leq 1000\}$.
Let $A_1 \subset \mathcal{U}$ be the multiples of 5, $A_2 \subset \mathcal{U}$ be the multiples of 6, and $A_3 \subset \mathcal{U}$ be the multiples of 8. We want $|\mathcal{U}| - |A_1 \cup A_2 \cup A_3|$.

In words, $A_1 \cap A_2$ is the set of integers $A_1 \cap A_3$ is $A_2 \cap A_3$ is and $A_1 \cap A_2 \cap A_3$ is the set of integers that are

Now calculate: $|A_1| =$ $|A_2| =$ $|A_3| =$ $|A_1 \cap A_2| =$ $|A_1 \cap A_3| =$ $|A_2 \cap A_3| =$ $|A_1 \cap A_2 \cap A_3| =$

And finally: So $|\mathcal{U}| - |A_1 \cup A_2 \cup A_3| =$
Combinations with Repetitions

Quick review

1. How many ways are there to choose k elements out of the set
 \[\{1 \cdot a_1, 1 \cdot a_2, \cdots, 1 \cdot a_n\}\]?
Combinations with Repetitions

Quick review

1. How many ways are there to choose \(k \) elements out of the set \(\{1 \cdot a_1, 1 \cdot a_2, \ldots, 1 \cdot a_n\} \)?

2. How many ways are there to choose \(k \) elements out of the set \(\{k \cdot a_1, k \cdot a_2, \ldots, k \cdot a_n\} \) (really \(\{\infty \cdot a_1, \infty \cdot a_2, \ldots, \infty \cdot a_n\} \)?)
Combinations with Repetitions

Quick review

1. How many ways are there to choose \(k \) elements out of the set \(\{1 \cdot a_1, 1 \cdot a_2, \ldots, 1 \cdot a_n\} \)?

2. How many ways are there to choose \(k \) elements out of the set \(\{k \cdot a_1, k \cdot a_2, \ldots, k \cdot a_n\} \)? (really \(\{\infty \cdot a_1, \infty \cdot a_2, \ldots, \infty \cdot a_n\} \))

What we would like to calculate is:

In how many ways can we choose \(k \) elements out of an arbitrary multiset?

Now, it’s as easy as PIE.
Example. Determine the number of 10-combinations of the multiset $S = \{3 \cdot a, 4 \cdot b, 5 \cdot c\}$.
Combinations with Repetitions

Example. Determine the number of 10-combinations of the multiset $S = \{3 \cdot a, 4 \cdot b, 5 \cdot c\}$.

Game plan: Let U be the set of 10-combs of $\{\infty \cdot a, \infty \cdot b, \infty \cdot c\}$. Use PIE to remove the 10-combs that violate the conditions of S.
Example. Determine the number of 10-combinations of the multiset \(S = \{3 \cdot a, 4 \cdot b, 5 \cdot c\} \).

Game plan: Let \(\mathcal{U} \) be the set of 10-combs of \(\{\infty \cdot a, \infty \cdot b, \infty \cdot c\} \). Use PIE to remove the 10-combs that violate the conditions of \(S \). Define \(A_1 \) to be 10-combs that include at least ___ a’s.
Example. Determine the number of 10-combinations of the multiset $S = \{3 \cdot a, 4 \cdot b, 5 \cdot c\}$.

Game plan: Let \mathcal{U} be the set of 10-combs of $\{\infty \cdot a, \infty \cdot b, \infty \cdot c\}$. Use PIE to remove the 10-combs that violate the conditions of S.

Define A_1 to be 10-combs that include at least ___ a’s.
Define A_2 to be 10-combs that include at least ___ b’s.
Define A_3 to be 10-combs that include at least ___ c’s.
Example. Determine the number of 10-combinations of the multiset $S = \{3 \cdot a, 4 \cdot b, 5 \cdot c\}$.

Game plan: Let \mathcal{U} be the set of 10-combs of $\{\infty \cdot a, \infty \cdot b, \infty \cdot c\}$. Use PIE to remove the 10-combs that violate the conditions of S.

Define A_1 to be 10-combs that include at least ___ a’s.
Define A_2 to be 10-combs that include at least ___ b’s.
Define A_3 to be 10-combs that include at least ___ c’s.

In words, $A_1 \cap A_2$ are those 10-combs that
$A_1 \cap A_3$:
$A_2 \cap A_3$:
$A_1 \cap A_2 \cap A_3$
Example. Determine the number of 10-combinations of the multiset $S = \{3 \cdot a, 4 \cdot b, 5 \cdot c\}$.

Game plan: Let \mathcal{U} be the set of 10-combs of $\{\infty \cdot a, \infty \cdot b, \infty \cdot c\}$. Use PIE to remove the 10-combs that violate the conditions of S.

Define A_1 to be 10-combs that include at least ___ a’s.
Define A_2 to be 10-combs that include at least ___ b’s.
Define A_3 to be 10-combs that include at least ___ c’s.

In words, $A_1 \cap A_2$ are those 10-combs that

$A_1 \cap A_3$: $A_2 \cap A_3$: $A_1 \cap A_2 \cap A_3$

Now calculate: $|\mathcal{U}| = |A_1| =$
Combinations with Repetitions

Example. Determine the number of 10-combinations of the multiset \(S = \{3 \cdot a, 4 \cdot b, 5 \cdot c\} \).

Game plan: Let \(U \) be the set of 10-combs of \(\{\infty \cdot a, \infty \cdot b, \infty \cdot c\} \). Use PIE to remove the 10-combs that violate the conditions of \(S \).

Define \(A_1 \) to be 10-combs that include at least \(a \)'s.
Define \(A_2 \) to be 10-combs that include at least \(b \)'s.
Define \(A_3 \) to be 10-combs that include at least \(c \)'s.

In words, \(A_1 \cap A_2 \) are those 10-combs that
\(A_1 \cap A_3 \): \(A_2 \cap A_3 \):
\(A_1 \cap A_2 \cap A_3 \)

Now calculate: \(|U| = |A_1| = |A_2| = \binom{3}{5} \)
\(|A_3| = \binom{3}{4} \)
\(|A_1 \cap A_2| = 3 \)
\(|A_1 \cap A_3| = 1 \)
\(|A_2 \cap A_3| = 0 \)
\(|A_1 \cap A_2 \cap A_3| = 0 \)

And finally: So \(|U| - |A_1 \cup A_2 \cup A_3| = \)
At a party, 10 partygoers check their hats. They “have a good time”, and are each handed a hat on the way out. In how many ways can the hats be returned so that no one is returned his/her own hat?
At a party, 10 partygoers check their hats. They “have a good time”, and are each handed a hat on the way out. In how many ways can the hats be returned so that no one is returned his/her own hat?

This is a derangement of ten objects.

Definition: An n-derangement is an n-permutation $\pi = p_1p_2\cdots p_n$ such that $p_1 \neq 1$, $p_2 \neq 2$, \cdots, $p_n \neq n$.

Note: A derangement is a permutation without fixed points $\pi(i) \neq i$.
Derangements

At a party, 10 partygoers check their hats. They “have a good time”, and are each handed a hat on the way out. In how many ways can the hats be returned so that no one is returned his/her own hat?

This is a derangement of ten objects.

Definition: An \(n \)-derangement is an \(n \)-permutation \(\pi = p_1 p_2 \cdots p_n \) such that \(p_1 \neq 1, \ p_2 \neq 2, \cdots, \ p_n \neq n \).

Note: A derangement is a permutation without fixed points \(\pi(i) = i \).

Notation: We let \(D_n \) be the number of all \(n \)-derangements.

When you see \(D_n \), think combinatorially: “The number of ways to return \(n \) hats to \(n \) people so no one gets his/her own hat back”
Calculating the number of derangements

Example. Calculate D_n.

Solution. Let \mathcal{U} be the set of all n-permutations.
Remove bad permutations using PIE.
For all i from 1 to n, define A_i to be n-perms where $p_i = i$.
Calculating the number of derangements

Example. Calculate D_n.

Solution. Let \mathcal{U} be the set of all n-permutations. Remove bad permutations using PIE. For all i from 1 to n, define A_i to be n-perms where $p_i = i$.

In words, $A_i \cap A_j$ are n-perms where
Calculating the number of derangements

Example. Calculate D_n.

Solution. Let \mathcal{U} be the set of all n-permutations.
Remove bad permutations using PIE.
For all i from 1 to n, define A_i to be n-perms where $p_i = i$.

In words, $A_i \cap A_j$ are n-perms where
$A_i \cap A_j \cap A_k$ are n-perms where
In general, $A_{i_1} \cap \cdots \cap A_{i_k}$ are n-perms with $p_{i_1} = i_1$, \cdots, $p_{i_k} = i_k$.

Now calculate: $|\mathcal{U}| = \quad |A_1| = \quad |A_2| = \quad$
Calculating the number of derangements

Example. Calculate D_n.

Solution. Let \mathcal{U} be the set of all n-permutations.
Remove bad permutations using PIE.
For all i from 1 to n, define A_i to be n-perms where $p_i = i$.

In words, $A_i \cap A_j$ are n-perms where

$A_i \cap A_j \cap A_k$ are n-perms where

In general, $A_{i_1} \cap \cdots \cap A_{i_k}$ are n-perms with $p_{i_1} = i_1, \ldots, p_{i_k} = i_k$.

Now calculate: $|\mathcal{U}| = \quad |A_1| = \quad |A_2| = \quad$

For all i and j, $|A_i \cap A_j| = \quad$
Calculating the number of derangements

Example. Calculate D_n.

Solution. Let \mathcal{U} be the set of all n-permutations. Remove bad permutations using PIE. For all i from 1 to n, define A_i to be n-perms where $p_i = i$.

In words, $A_i \cap A_j$ are n-perms where $A_i \cap A_j \cap A_k$ are n-perms where $A_{i_1} \cap \cdots \cap A_{i_k}$ are n-perms with $p_{i_1} = i_1, \ldots, p_{i_k} = i_k$.

Now calculate: $|\mathcal{U}| = A_1 = A_2 = \cdots$

For all i and j, $|A_i \cap A_j| = \cdots$

When intersecting k sets, $|A_{i_1} \cap \cdots \cap A_{i_k}| = \cdots$

Recall: $|A_1 \cup \cdots \cup A_n| = \sum |A_i| - \sum |A_i \cap A_j| + \sum |A_i \cap A_j \cap A_k| - \cdots$
Calculating the number of derangements

Example. Calculate D_n.

Solution. Let \mathcal{U} be the set of all n-permutations. Remove bad permutations using PIE. For all i from 1 to n, define A_i to be n-perms where $p_i = i$.

In words, $A_i \cap A_j$ are n-perms where $A_i \cap A_j \cap A_k$ are n-perms where

In general, $A_{i_1} \cap \cdots \cap A_{i_k}$ are n-perms with $p_{i_1} = i_1$, \cdots, $p_{i_k} = i_k$.

Now calculate: $|\mathcal{U}| = |A_1| = |A_2| =$

For all i and j, $|A_i \cap A_j| =$

When intersecting k sets, $|A_{i_1} \cap \cdots \cap A_{i_k}| =$

Recall: $|A_1 \cup \cdots \cup A_n| = \sum |A_i| - \sum |A_i \cap A_j| + \sum |A_i \cap A_j \cap A_k| \cdots$

Therefore, $D_n = |\mathcal{U}| - |A_1 \cup \cdots \cup A_n| =$
Randomly returning hats

Upon simplification, we see

\[D_n = n! - \binom{n}{1}(n-1)! + \binom{n}{2}(n-2)! - \cdots + (-1)^n \binom{n}{n} 0! \]

\[= n! - \frac{n!}{1!} + \frac{n!}{2!} - \cdots + (-1)^n \frac{n!}{n!} \]

\[= n! \left[1 - \frac{1}{1!} + \frac{1}{2!} - \frac{1}{3!} + \cdots + (-1)^n \frac{1}{n!} \right] \]
Randomly returning hats

Upon simplification, we see
\[D_n = n! - \binom{n}{1}(n-1)! + \binom{n}{2}(n-2)! - \cdots + (-1)^n \binom{n}{n} 0! \]
\[= n! - \frac{n!}{1!} + \frac{n!}{2!} - \cdots + (-1)^n \frac{n!}{n!} \]
\[= n! \left[1 - \frac{1}{1!} + \frac{1}{2!} - \frac{1}{3!} + \cdots + (-1)^n \frac{1}{n!} \right] \]

Recall: Taylor series expansion of \(e^x \):
\[e^x = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots. \]
Randomly returning hats

Upon simplification, we see

\[D_n = n! - \binom{n}{1}(n-1)! + \binom{n}{2}(n-2)! - \cdots + (-1)^n \binom{n}{n} 0! \]

\[= n! - \frac{n!}{1!} + \frac{n!}{2!} - \cdots + (-1)^n \frac{n!}{n!} \]

\[= n! \left[1 - \frac{1}{1!} + \frac{1}{2!} - \frac{1}{3!} + \cdots + (-1)^n \frac{1}{n!} \right] \]

Recall: Taylor series expansion of \(e^x \):

\[e^x = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots. \]

Plug in \(x = -1 \) and truncate after \(n \) terms to see that

\[e^{-1} \approx \left[1 - \frac{1}{1!} + \frac{1}{2!} - \frac{1}{3!} + \cdots + (-1)^n \frac{1}{n!} \right] \]
Randomly returning hats

Upon simplification, we see
\[
D_n = n! - \binom{n}{1}(n-1)! + \binom{n}{2}(n-2)! - \cdots + (-1)^n \binom{n}{n} 0!
\]
\[
= n! - \frac{n!}{1!} + \frac{n!}{2!} - \cdots + (-1)^n \frac{n!}{n!}
\]
\[
= n! \left[1 - \frac{1}{1!} + \frac{1}{2!} - \frac{1}{3!} + \cdots + (-1)^n \frac{1}{n!} \right]
\]

Recall: Taylor series expansion of \(e^x\):
\[
e^x = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots.
\]
Plug in \(x = -1\) and truncate after \(n\) terms to see that
\[
e^{-1} \approx \left[1 - \frac{1}{1!} + \frac{1}{2!} - \frac{1}{3!} + \cdots + (-1)^n \frac{1}{n!} \right]
\]

Conclusion: If \(n\) people go to a party and the hats are passed back randomly, the probability that no one gets his or her hat back at the party is \(D_n/n!\), which is approximately \(1/e \approx 37\%\).
Recall: The combinatorial interpretation of D_n is: “The number of ways to return n hats to n people so no one gets his/her own hat back”

Example. Prove the following recurrence relation for D_n combinatorially.

$$D_n = (n - 1)(D_{n-2} + D_{n-1})$$
A formula for Stirling numbers (p. 90)

Recall: \(S(n, k) = \{n\choose k} \) is the number of partitions of the set \([n]\) into exactly \(k\) parts
A formula for Stirling numbers (p. 90)

Recall: $S(n, k) = \left\{ \begin{array}{c} n \\ k \end{array} \right\}$ is the number of partitions of the set $[n]$ into exactly k parts.
A formula for Stirling numbers (p. 90)

Recall: \(S(n, k) = \binom{n}{k} \) is the number of partitions of the set \([n]\) into exactly \(k\) parts, and \(k!S(n, k)\) is the number of \textit{onto functions} \([n] \to [k]\).
Recall: \(S(n, k) = \{^n_k\} \) is the number of partitions of the set \([n]\) into exactly \(k\) parts, and \(k!S(n, k)\) is the number of \textbf{onto functions} \([n]\rightarrow[k]\).

Question: What is a formula for \(S(n, k)\)?
A formula for Stirling numbers (p. 90)

Recall: \(S(n, k) = \binom{n}{k} \) is the number of partitions of the set \([n]\) into exactly \(k\) parts, and \(k!S(n, k)\) is the number of onto functions \([n]\to[k]\).

Question: What is a formula for \(S(n, k)\)?

Solution. We will find the number of surjections from \([n]\) to \([k]\).

Use PIE with \(\mathcal{U} = \text{set of all functions from } [n] \to [k]\).

We will remove the “bad” functions where the range is not \([k]\).
A formula for Stirling numbers (p. 90)

Recall: $S(n, k) = \binom{n}{k}$ is the number of partitions of the set $[n]$ into exactly k parts, and $k!S(n, k)$ is the number of onto functions $[n] \rightarrow [k]$.

Question: What is a formula for $S(n, k)$?

Solution. We will find the number of surjections from $[n]$ to $[k]$. Use PIE with $\mathcal{U} =$ set of all functions from $[n]$ to $[k]$. We will remove the “bad” functions where the range is not $[k]$. Define A_i be the set of functions $f : [n] \rightarrow [k]$ where i is not “hit”.

(Careful: change of notation!!)
A formula for Stirling numbers (p. 90)

Recall: $S(n, k) = \binom{n}{k}$ is the number of partitions of the set $[n]$ into exactly k parts, and $k!S(n, k)$ is the number of onto functions $[n] \rightarrow [k]$.

Question: What is a formula for $S(n, k)$?

Solution. We will find the number of surjections from $[n]$ to $[k]$. Use PIE with $\mathcal{U} = \text{set of all functions from } [n] \text{ to } [k]$. We will remove the “bad” functions where the range is not $[k]$. Define A_i be the set of functions $f : [n] \rightarrow [k]$ where i is not “hit”.

In words, $A_{i_1} \cap \cdots \cap A_{i_j}$ are functions where none of i_1 through i_j are elements of the image.
A formula for Stirling numbers (p. 90)

Recall: $S(n, k) = \binom{n}{k}$ is the number of partitions of the set $[n]$ into exactly k parts, and $k!S(n, k)$ is the number of onto functions $[n] \to [k]$.

Question: What is a formula for $S(n, k)$?

Solution. We will find the number of surjections from $[n]$ to $[k]$. Use PIE with $\mathcal{U} =$ set of all functions from $[n]$ to $[k]$. We will remove the “bad” functions where the range is not $[k]$. Define A_i be the set of functions $f : [n] \to [k]$ where i is not “hit”.

In words, $A_{i_1} \cap \cdots \cap A_{i_j}$ are functions where none of i_1 through i_j are elements of the image.

We calculate: $|\mathcal{U}| = k^n$, $|A_i| = (k - 1)^n$, $|A_i \cap A_j| = (k - 2)^n$ When intersecting j sets, $|A_{i_1} \cap \cdots \cap A_{i_j}| = (k - j)^n$.
Recall: $S(n, k) = \binom{n}{k}$ is the number of partitions of the set $[n]$ into exactly k parts, and $k!S(n, k)$ is the number of onto functions $[n] \rightarrow [k]$.

Question: What is a formula for $S(n, k)$?

Solution. We will find the number of surjections from $[n]$ to $[k]$. Use PIE with $\mathcal{U} =$ set of all functions from $[n]$ to $[k]$. We will remove the “bad” functions where the range is not $[k]$.

Define A_i be the set of functions $f : [n] \rightarrow [k]$ where i is not “hit”.

In words, $A_{i_1} \cap \cdots \cap A_{i_j}$ are functions where none of i_1 through i_j are elements of the image.

We calculate: $|\mathcal{U}| = k^n$, $|A_i| = (k - 1)^n$, $|A_i \cap A_j| = (k - 2)^n$.

When intersecting j sets, $|A_{i_1} \cap \cdots \cap A_{i_j}| = (k - j)^n$.

Therefore, $k!S(n, k) = \sum_{j=0}^{k} (-1)^j \binom{k}{j} (k - j)^n$; we conclude $S(n, k) = \frac{1}{k!} \sum_{j=0}^{k} (-1)^j \binom{k}{j} (k - j)^n$.
A formula for Stirling numbers (p. 90)

Recall: $S(n, k) = \binom{n}{k}$ is the number of partitions of the set $[n]$ into exactly k parts, and $k!S(n, k)$ is the number of onto functions $[n] \rightarrow [k]$.

Question: What is a formula for $S(n, k)$?

Solution. We will find the number of surjections from $[n]$ to $[k]$. Use PIE with $\mathcal{U} = \text{set of all functions from } [n] \text{ to } [k]$. We will remove the “bad” functions where the range is not $[k]$.

Define A_i be the set of functions $f : [n] \rightarrow [k]$ where i is not “hit”.

In words, $A_{i_1} \cap \cdots \cap A_{i_j}$ are functions where none of i_1 through i_j are elements of the image.

We calculate: $|\mathcal{U}| = k^n$, $|A_i| = (k - 1)^n$, $|A_i \cap A_j| = (k - 2)^n$

When intersecting j sets, $|A_{i_1} \cap \cdots \cap A_{i_j}| = (k - j)^n$.

Therefore, $k!S(n, k) = \sum_{j=0}^{k} (-1)^j \binom{k}{j} (k - j)^n$; we conclude

$S(n, k) = \frac{1}{k!} \sum_{j=0}^{k} (-1)^j \binom{k}{j} (k - j)^n = \frac{1}{k!} \sum_{j=0}^{k} (-1)^{k-j} \binom{k}{j} j^n$.
A formula for Bell numbers (p. 166)

Recall: B_n is the number of partitions of $[n]$ into any number of parts. Manipulate our expression from prev. page to find a formula.

$$B_n = \sum_{k \geq 0} \binom{n}{k} = \sum_{k \geq 0} \frac{1}{k!} \sum_{j=0}^{k} \binom{k}{j} (-1)^{k-j} j^n$$
A formula for Bell numbers (p. 166)

Recall: B_n is the number of partitions of $[n]$ into any number of parts. Manipulate our expression from prev. page to find a formula.

$$B_n = \sum_{k \geq 0} \left\{ \binom{n}{k} \right\} = \sum_{k \geq 0} \frac{1}{k!} \sum_{j=0}^{k} \frac{k!}{j!(k-j)!} (-1)^{k-j} j^n$$
A formula for Bell numbers (p. 166)

Recall: B_n is the number of partitions of $[n]$ into any number of parts. Manipulate our expression from prev. page to find a formula.

$$B_n = \sum_{k \geq 0} \left\{ \begin{array}{c} n \\ k \end{array} \right\} = \sum_{k \geq 0} \frac{1}{k!} \sum_{j=0}^{k} \frac{k!}{j!(k-j)!} (-1)^{k-j} j^n$$

$$= \sum_{k \geq 0} \sum_{j=0}^{k} \frac{1}{j!(k-j)!} (-1)^{k-j} j^n$$
A formula for Bell numbers (p. 166)

Recall: B_n is the number of partitions of $[n]$ into any number of parts. Manipulate our expression from prev. page to find a formula.

$$B_n = \sum_{k \geq 0} \binom{n}{k} = \sum_{k \geq 0} \frac{1}{k!} \sum_{j=0}^{k} \frac{k!}{j!(k-j)!} (-1)^{k-j} j^n$$

$$= \sum_{k \geq 0} \sum_{j=0}^{k} \frac{1}{j!(k-j)!} (-1)^{k-j} j^n = \sum_{k \geq 0} \sum_{j=0}^{k} \frac{(-1)^{k-j} j^n}{(k-j)!j!}$$
A formula for Bell numbers (p. 166)

Recall: B_n is the number of partitions of $[n]$ into any number of parts. Manipulate our expression from prev. page to find a formula.

\[B_n = \sum_{k \geq 0} \left\{ \binom{n}{k} \right\} = \sum_{k \geq 0} \frac{1}{k!} \sum_{j=0}^{k} \frac{k!}{j!(k-j)!} (-1)^{k-j} j^n \]

\[= \sum_{k \geq 0} \sum_{j=0}^{k} \frac{1}{j!(k-j)!} (-1)^{k-j} j^n = \sum_{k \geq 0} \sum_{j=0}^{k} \frac{(-1)^{k-j} j^n}{(k-j)! j!} \]

\[= \sum_{j \geq 0} \sum_{k \geq j} \frac{(-1)^{k-j} j^n}{(k-j)! j!} \]
Recall: \(B_n \) is the number of partitions of \([n]\) into any number of parts. Manipulate our expression from prev. page to find a formula.

\[
B_n = \sum_{k \geq 0} \binom{n}{k} = \sum_{k \geq 0} \frac{1}{k!} \sum_{j=0}^{k} \frac{k!}{j!(k-j)!} (-1)^{k-j} j^n
\]

\[
= \sum_{k \geq 0} \sum_{j=0}^{k} \frac{1}{j!(k-j)!} (-1)^{k-j} j^n = \sum_{k \geq 0} \sum_{j=0}^{k} \frac{(-1)^{k-j} j^n}{(k-j)! j!}
\]

\[
= \sum_{j \geq 0} \sum_{k \geq j} \frac{(-1)^{k-j} j^n}{(k-j)! j!} = \sum_{j \geq 0} \frac{j^n}{j!} \sum_{k \geq j} \frac{(-1)^{k-j}}{(k-j)!}
\]
A formula for Bell numbers (p. 166)

Recall: B_n is the number of partitions of $[n]$ into any number of parts. Manipulate our expression from prev. page to find a formula.

$$B_n = \sum_{k \geq 0} \frac{1}{k!} \sum_{j=0}^{k} \frac{k!}{j!(k-j)!} (-1)^{k-j} j^n$$

$$= \sum_{k \geq 0} \sum_{j=0}^{k} \frac{1}{j!(k-j)!} (-1)^{k-j} j^n = \sum_{k \geq 0} \sum_{j=0}^{k} \frac{(-1)^{k-j} j^n}{(k-j)! \ j!}$$

$$= \sum_{j \geq 0} \sum_{k \geq j} \frac{(-1)^{k-j} j^n}{(k-j)! \ j!} = \sum_{j \geq 0} \frac{j^n}{j!} \sum_{m \geq 0} \frac{(-1)^m}{(m)!}$$
A formula for Bell numbers (p. 166)

Recall: B_n is the number of partitions of $[n]$ into any number of parts. Manipulate our expression from prev. page to find a formula.

$$B_n = \sum_{k \geq 0} \binom{n}{k} = \sum_{k \geq 0} \frac{1}{k!} \sum_{j=0}^{k} \frac{k!}{j!(k-j)!} (-1)^{k-j} j^n$$

$$= \sum_{k \geq 0} \sum_{j=0}^{k} \frac{1}{j!(k-j)!} (-1)^{k-j} j^n = \sum_{k \geq 0} \sum_{j=0}^{k} \frac{(-1)^{k-j} j^n}{(k-j)! \ j!}$$

$$= \sum_{j \geq 0} \sum_{k \geq j} \frac{(-1)^{k-j} j^n}{(k-j)! \ j!} = \sum_{j \geq 0} \frac{j^n}{j!} \sum_{m \geq 0} \frac{(-1)^m}{(m)!} \frac{1}{e} = \sum_{j \geq 0} \frac{j^n}{j!} \frac{1}{e}$$
Recall: B_n is the number of partitions of $[n]$ into any number of parts. Manipulate our expression from prev. page to find a formula.

$$B_n = \sum_{k \geq 0} \binom{n}{k} = \sum_{k \geq 0} \frac{1}{k!} \sum_{j=0}^{k} \frac{k!}{j!(k-j)!} (-1)^{k-j} j^n$$

$$= \sum_{k \geq 0} \sum_{j=0}^{k} \frac{1}{j!(k-j)!} (-1)^{k-j} j^n = \sum_{k \geq 0} \sum_{j=0}^{k} \frac{(-1)^{k-j} j^n}{(k-j)! \ j!}$$

$$= \sum_{j \geq 0} \sum_{k \geq j} \frac{(-1)^{k-j} j^n}{(k-j)! \ j!} = \sum_{j \geq 0} \frac{j^n}{j!} \sum_{m \geq 0} \frac{(-1)^m}{(m)!} = \sum_{j \geq 0} \frac{j^n}{j! \ e}$$

Theorem 4.3.3. For any $n > 0$, $B_n = \frac{1}{e} \sum_{j \geq 0} \frac{j^n}{j!}$.
A formula for Bell numbers (p. 166)

Recall: \(B_n \) is the number of partitions of \([n]\) into any number of parts.
Manipulate our expression from prev. page to find a formula.

\[
B_n = \sum_{k \geq 0} \binom{n}{k} = \sum_{k \geq 0} \frac{1}{k!} \sum_{j=0}^{k} \frac{k!}{j!(k-j)!} (-1)^{k-j} j^n
\]

\[
= \sum_{k \geq 0} \sum_{j=0}^{k} \frac{1}{j!(k-j)!} (-1)^{k-j} j^n = \sum_{k \geq 0} \sum_{j=0}^{k} \frac{(-1)^{k-j} j^n}{(k-j)!} j!
\]

\[
= \sum_{j \geq 0} \sum_{k \geq j} \frac{(-1)^{k-j} j^n}{(k-j)!} j = \sum_{j \geq 0} j^n \sum_{m \geq 0} \frac{(-1)^m}{m!} = \sum_{j \geq 0} j^n \frac{1}{e}
\]

Theorem 4.3.3. For any \(n > 0 \), \(B_n = \frac{1}{e} \sum_{j \geq 0} \frac{j^n}{j!} \).

For example, \(B_5 = \frac{1}{e} \left(\frac{0^5}{0!} + \frac{1^5}{1!} + \frac{2^5}{2!} + \frac{3^5}{3!} + \frac{4^5}{4!} + \frac{5^5}{5!} + \cdots \right) = 52. \)