Counting integral solutions

Question: How many non-negative integer solutions are there of \(x_1 + x_2 + x_3 + x_4 = 10 \)?

- Give some examples of solutions.
- Characterize what solutions look like.
- A combinatorial object with a similar flavor is:

In general, the number of non-negative integer solutions to \(x_1 + x_2 + \cdots + x_n = k \) is _______.

Counting integral solutions

Question: How many non-negative integer solutions are there of \(x_1 + x_2 + x_3 + x_4 = 10 \)?

- Give some examples of solutions.
- Characterize what solutions look like.
- A combinatorial object with a similar flavor is:

In general, the number of non-negative integer solutions to \(x_1 + x_2 + \cdots + x_n = k \) is _______.

Question: How many positive integer solutions are there of \(x_1 + x_2 + x_3 + x_4 = 10 \), where \(x_4 \geq 3 \)?
The sum principle

Often it makes sense to break down your counting problem into smaller, disjoint, and easier-to-count sub-problems.

Example. How many integers from 1 to 999999 are palindromes?
The sum principle

Often it makes sense to break down your counting problem into smaller, disjoint, and easier-to-count sub-problems.

Example. How many integers from 1 to 999999 are palindromes?

Answer: Condition on how many digits.

- Length 1:
- Length 2:
- Length 3:
- Length 4:
- Length 5,6:
- Total:
The sum principle

Often it makes sense to break down your counting problem into smaller, disjoint, and easier-to-count sub-problems.

Example. How many integers from 1 to 999999 are palindromes?

Answer: Condition on how many digits.

- Length 1:
- Length 2:
- Length 3:
- Length 4:
- Length 5,6:
- Total:

★ Every palindrome between 1 and 999999 is counted once.
The sum principle

Often it makes sense to break down your counting problem into smaller, disjoint, and easier-to-count sub-problems.

Example. How many integers from 1 to 999999 are palindromes?

Answer: Condition on how many digits.

- Length 1:
- Length 2:
- Length 3:
- Length 4:
- Length 5,6:
- Total:

★ Every palindrome between 1 and 999999 is counted once.

This illustrates the sum principle:

Suppose the objects to be counted can be broken into k disjoint and exhaustive cases. If there are n_j objects in case j, then there are $n_1 + n_2 + \cdots + n_k$ objects in all.
Counting pitfalls

When counting, there are two common pitfalls:
Counting pitfalls

When counting, there are two common pitfalls:

- Undercounting
When counting, there are two common pitfalls:

- Undercounting
- Overcounting
Counting pitfalls

When counting, there are two common pitfalls:

▶ Undercounting
 ▶ Often, forgetting cases when applying the sum principle.
 ▶ **Ask:** Did I miss something?

▶ Overcounting
Counting pitfalls

When counting, there are two common pitfalls:

- **Undercounting**
 - Often, forgetting cases when applying the sum principle.
 - **Ask:** Did I miss something?

- **Overcounting**
 - Often, misapplying the product principle.
 - **Ask:** Do cases need to be counted in different ways?
 - **Ask:** Does the same object appear in multiple ways?
When counting, there are two common pitfalls:

- **Undercounting**
 - Often, forgetting cases when applying the sum principle.
 - **Ask:** Did I miss something?

- **Overcounting**
 - Often, misapplying the product principle.
 - **Ask:** Do cases need to be counted in different ways?
 - **Ask:** Does the same object appear in multiple ways?

Common example: A deck of cards.

There are four suits: Diamond ♦️, Heart ♥️, Club ♣️, Spade ♠️.
Each has 13 cards: Ace, King, Queen, Jack, 10, 9, 8, 7, 6, 5, 4, 3, 2.
Counting pitfalls

When counting, there are two common pitfalls:

- **Undercounting**
 - Often, *forgetting cases* when applying the sum principle.
 - **Ask:** Did I miss something?

- **Overcounting**
 - Often, *misapplying* the product principle.
 - **Ask:** Do cases need to be counted in different ways?
 - **Ask:** Does the same object appear in multiple ways?

Common example: A deck of cards.

There are four suits: Diamond ♦, Heart ♥, Club ♣, Spade ♠.
Each has 13 cards: Ace, King, Queen, Jack, 10, 9, 8, 7, 6, 5, 4, 3, 2.

Example. Suppose you are dealt two diamonds between 2 and 10.
In how many ways can the product be even?
Example. In Blackjack you are dealt 2 cards: 1 face-up, 1 face-down. In how many ways can the face-down card be an Ace and the face-up card be a Heart 🖤?
Example. In Blackjack you are dealt 2 cards: 1 face-up, 1 face-down. In how many ways can the face-down card be an Ace and the face-up card be a Heart ♥?

Answer: There are ___ aces, so there are ___ choices for the down card.
Example. In Blackjack you are dealt 2 cards: 1 face-up, 1 face-down. In how many ways can the face-down card be an Ace and the face-up card be a Heart?

Answer: There are ___ aces, so there are ___ choices for the down card. There are ___ hearts, so there are ____ choices for the up card.
Example. In Blackjack you are dealt 2 cards: 1 face-up, 1 face-down. In how many ways can the face-down card be an Ace and the face-up card be a Heart 🌸?

Answer: There are ___ aces, so there are ___ choices for the down card. There are ___ hearts, so there are ____ choices for the up card. By the product principle, there are 52 ways in all.
Example. In Blackjack you are dealt 2 cards: 1 face-up, 1 face-down. In how many ways can the face-down card be an Ace and the face-up card be a Heart ♥?

Answer: There are ___ aces, so there are ___ choices for the down card. There are ___ hearts, so there are ____ choices for the up card. By the product principle, there are 52 ways in all.

Except:
Example. In Blackjack you are dealt 2 cards: 1 face-up, 1 face-down. In how many ways can the face-down card be an Ace and the face-up card be a Heart♥?

Answer: There are ___ aces, so there are ___ choices for the down card. There are ___ hearts, so there are ____ choices for the up card. By the product principle, there are 52 ways in all.

Except:

Remember to ask: Do cases need to be counted in different ways?
Example. How many 4-lists taken from [9] have at least one pair of adjacent elements equal?

Examples: 1114, 1229, 5555 Non-examples: 1231, 9898.
Example. How many 4-lists taken from [9] have at least one pair of adjacent elements equal?

Examples: 1114, 1229, 5555 Non-examples: 1231, 9898.

Strategy:
1. Choose where the adjacent equal elements are. (___ ways)
2. Choose which number they are. (___ ways)
3. Choose the numbers for the remaining elements. (___ ways)
Example. How many 4-lists taken from [9] have at least one pair of adjacent elements equal?

Examples: 1114, 1229, 5555

Non-examples: 1231, 9898.

Strategy:

1. Choose where the adjacent equal elements are. (___ ways)
2. Choose which number they are. (___ ways)
3. Choose the numbers for the remaining elements. (___ ways)

By the product principle, there are ________ ways in all.
Example. How many 4-lists taken from [9] have at least one pair of adjacent elements equal?

Examples: 1114, 1229, 5555
Non-examples: 1231, 9898.

Strategy:
1. Choose where the adjacent equal elements are. (___ ways)
2. Choose which number they are. (___ ways)
3. Choose the numbers for the remaining elements. (___ ways)

By the product principle, there are _________ ways in all.

Except:
Example. How many 4-lists taken from [9] have at least one pair of adjacent elements equal?

Examples: 1114, 1229, 5555
Non-examples: 1231, 9898.

Strategy:
1. Choose where the adjacent equal elements are.
2. Choose which number they are.
3. Choose the numbers for the remaining elements.

By the product principle, there are ________ ways in all.

Except:

Remember to ask: Does the same object appear in multiple ways?
Counting the complement

Q1: How many 4-lists taken from [9] have at least one pair of adjacent elements equal?

—Compare this to—

Q2: How many 4-lists taken from [9] have no pairs of adjacent elements equal?

What can we say about:

Q1: Q2:
Counting the complement

Q1: How many 4-lists taken from [9] have at least one pair of adjacent elements equal?

—Compare this to—

Q2: How many 4-lists taken from [9] have no pairs of adjacent elements equal?

What can we say about:

Q1: Q2: Together:

Q3:
Q1: How many 4-lists taken from [9] have at least one pair of adjacent elements equal?

—Compare this to—

Q2: How many 4-lists taken from [9] have no pairs of adjacent elements equal?

What can we say about:

Q1: Q2: Together:

Q3:

Strategy: It is sometimes easier to count the complement.

Answer to Q3:
Counting the complement

Q1: How many 4-lists taken from [9] have at least one pair of adjacent elements equal?

—Compare this to—

Q2: How many 4-lists taken from [9] have no pairs of adjacent elements equal?

What can we say about:

Q1:

Q2:

Together:

Q3:

Strategy: It is sometimes easier to count the complement.

Answer to Q3:
Answer to Q2:
Counting the complement

Q1: How many 4-lists taken from [9] have at least one pair of adjacent elements equal?

—Compare this to—

Q2: How many 4-lists taken from [9] have no pairs of adjacent elements equal?

What can we say about:

Q1:
Q2:
Together:

Q3:

Strategy: It is sometimes easier to count the complement.

Answer to Q3:
Answer to Q2:
Answer to Q1:
Example. When playing five-card poker, what is the probability that you are dealt a full house?

[Three cards of one type and two cards of another type.] 5 5 5 K K

Game plan:
Poker hands

Example. When playing five-card poker, what is the probability that you are dealt a full house?

[Three cards of one type and two cards of another type.] 5 5 5 K K

Game plan:

- Count the total number of hands.
- Count the number of possible full houses.
- Divide to find the probability.
Poker hands

Example. When playing five-card poker, what is the probability that you are dealt a full house?

Three cards of one type and two cards of another type. 5 5 5 K K

Game plan:

- Count the total number of hands.
- Count the number of possible full houses.
 - Choose the denomination of the three-of-a-kind.
 - Choose which three suits they are in.
- Divide to find the probability.
Example. When playing five-card poker, what is the probability that you are dealt a full house?

[Three cards of one type and two cards of another type.] 5 5 5 K K

Game plan:

- Count the total number of hands.

- Count the number of possible full houses.
 - Choose the denomination of the three-of-a-kind.
 - Choose which three suits they are in.
 - Choose the denomination of the pair.
 - Choose which two suits they are in.
 - Apply the multiplication principle.

- Divide to find the probability.
Example. When playing five-card poker, what is the probability that you are dealt a full house?

[Three cards of one type and two cards of another type.] 5 5 5 K K

Game plan:

- Count the total number of hands.

- Count the number of possible full houses.
 - Choose the denomination of the three-of-a-kind.
 - Choose which three suits they are in.
 - Choose the denomination of the pair.
 - Choose which two suits they are in.
 - Apply the multiplication principle.

- Divide to find the probability.
Poker hands

Example. When playing five-card poker, what is the probability that you are dealt a full house?

[Three cards of one type and two cards of another type.] 5 5 5 K K

Game plan:

- Count the total number of hands.
- Count the number of possible full houses. # of ways
 - Choose the denomination of the three-of-a-kind.
 - Choose which three suits they are in.
 - Choose the denomination of the pair.
 - Choose which two suits they are in.
 - Apply the multiplication principle. Total:
- Divide to find the probability.

$$\frac{3744}{2598960} \approx 0.14\%$$
Introduction to Bijections

Key tool: A useful method of proving that two sets A and B are of the same size is by way of a *bijection*.

A **bijection** is a function or rule that pairs up elements of A and B.
Introduction to Bijections

Key tool: A useful method of proving that two sets A and B are of the same size is by way of a *bijection*.

A **bijection** is a function or rule that pairs up elements of A and B.

Example. The set A of subsets of $\{s_1, s_2, s_3\}$ are in bijection with the set B of binary words of length 3.

Set A: \[
\emptyset, \ \{s_1\}, \ \{s_2\}, \ \{s_1, s_2\}, \ \{s_3\}, \ \{s_1, s_3\}, \ \{s_2, s_3\}, \ \{s_1, s_2, s_3\}\]

Set B: \[
000, \ 100, \ 010, \ 110, \ 001, \ 101, \ 011, \ 111\]

Introduction to Bijections

Key tool: A useful method of proving that two sets A and B are of the same size is by way of a *bijection*.

A **bijection** is a function or rule that pairs up elements of A and B.

Example. The set A of subsets of $\{s_1, s_2, s_3\}$ are in bijection with the set B of binary words of length 3.

Set A: \(\{ \emptyset, \{s_1\}, \{s_2\}, \{s_1, s_2\}, \{s_3\}, \{s_1, s_3\}, \{s_2, s_3\}, \{s_1, s_2, s_3\} \} \)

Bijection: \(\uparrow \)

Set B: \(\{000, 100, 010, 110, 001, 101, 011, 111\} \)
Introduction to Bijections

Key tool: A useful method of proving that two sets A and B are of the same size is by way of a *bijection*.

A **bijection** is a function or rule that pairs up elements of A and B.

Example. The set A of subsets of $\{s_1, s_2, s_3\}$ are in bijection with the set B of binary words of length 3.

- **Set A:** $\{ \emptyset, \{s_1\}, \{s_2\}, \{s_1, s_2\}, \{s_3\}, \{s_1, s_3\}, \{s_2, s_3\}, \{s_1, s_2, s_3\} \}$
- **Bijection:** $\uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow$
- **Set B:** $\{ 000, 100, 010, 110, 001, 101, 011, 111 \}$

Rule: Given $a \in A$, (a is a subset), define $b \in B$ (b is a word):
- If $s_i \in a$, then letter i in b is 1.
- If $s_i \notin a$, then letter i in b is 0.
Introduction to Bijections

Key tool: A useful method of proving that two sets A and B are of the same size is by way of a *bijection*.

A **bijection** is a function or rule that pairs up elements of A and B.

Example. The set A of subsets of $\{s_1, s_2, s_3\}$ are in bijection with the set B of binary words of length 3.

| Set A: $\{ \emptyset, \{s_1\}, \{s_2\}, \{s_1, s_2\}, \{s_3\}, \{s_1, s_3\}, \{s_2, s_3\}, \{s_1, s_2, s_3\} \} $ |
| Set B: $\{000, 100, 010, 110, 001, 101, 011, 111\} $ |

Rule: Given $a \in A$, $(a$ is a subset), define $b \in B$ $(b$ is a word):
If $s_i \in a$, then letter i in b is 1. If $s_i \notin a$, then letter i in b is 0.

Difficulties:
- Finding the function or rule (requires rearranging, ordering)
- Proving the function or rule (show it IS a bijection).
What is a Function?

Reminder: A function f from A to B (write $f : A \rightarrow B$) is a rule where for each element $a \in A$, $f(a)$ is defined as an element $b \in B$ (write $f : a \mapsto b$).
What is a Function?

Reminder: A function f from A to B (write $f : A \rightarrow B$) is a rule where for each element $a \in A$, $f(a)$ is defined as an element $b \in B$ (write $f : a \mapsto b$).

- A is called the **domain**. (We write $A = \text{dom}(f)$)
- B is called the **codomain**. (We write $B = \text{cod}(f)$)
What is a Function?

Reminder: A **function** f from A to B (write $f : A \to B$) is a rule where for each element $a \in A$, $f(a)$ is defined as an element $b \in B$ (write $f : a \mapsto b$).

- A is called the **domain**. (We write $A = \text{dom}(f)$)
- B is called the **codomain**. (We write $B = \text{cod}(f)$)
- The **range** of f is the set of values that f takes on:

$$\text{rng}(f) = \{ b \in B : f(a) = b \text{ for at least one } a \in A \}$$
What is a Function?

Reminder: A function f from A to B (write $f : A \rightarrow B$) is a rule where for each element $a \in A$, $f(a)$ is defined as an element $b \in B$ (write $f : a \mapsto b$).

- A is called the **domain**. (We write $A = \text{dom}(f)$)
- B is called the **codomain**. (We write $B = \text{cod}(f)$)
- The **range** of f is the set of values that f takes on:
 \[
 \text{rng}(f) = \{ b \in B : f(a) = b \text{ for at least one } a \in A \}\]

Example. Let A be the set of 3-subsets of $[n]$ and let B be the set of 3-lists of $[n]$. Then define $f : A \rightarrow B$ to be the function that takes a 3-subset $\{i_1, i_2, i_3\} \in A$ (with $i_1 \leq i_2 \leq i_3$) to the word $i_1i_2i_3 \in B$.

Question: Is $\text{rng}(f) = B$?
What is a Bijection?

Definition: A function $f : A \rightarrow B$ is **one-to-one** (an injection) when
For each $a_1, a_2 \in A$, if $f(a_1) = f(a_2)$, then $a_1 = a_2$.
What is a Bijection?

Definition: A function $f : A \rightarrow B$ is one-to-one (an injection) when

For each $a_1, a_2 \in A$, if $f(a_1) = f(a_2)$, then $a_1 = a_2$.

Equivalently,

For each $a_1, a_2 \in A$, if $a_1 \neq a_2$, then $f(a_1) \neq f(a_2)$.
What is a Bijection?

Definition: A function \(f : A \to B \) is **one-to-one** (an **injection**) when
For each \(a_1, a_2 \in A \), if \(f(a_1) = f(a_2) \), then \(a_1 = a_2 \).

Equivalently,
For each \(a_1, a_2 \in A \), if \(a_1 \neq a_2 \), then \(f(a_1) \neq f(a_2) \).

“When the inputs are different, the outputs are different.” (picture)
What is a Bijection?

Definition: A function $f : A \rightarrow B$ is one-to-one (an injection) when For each $a_1, a_2 \in A$, if $f(a_1) = f(a_2)$, then $a_1 = a_2$. Equivalently, For each $a_1, a_2 \in A$, if $a_1 \neq a_2$, then $f(a_1) \neq f(a_2)$. “When the inputs are different, the outputs are different.” (picture)

Definition: A function $f : A \rightarrow B$ is onto (a surjection) when For each $b \in B$, there exists some $a \in A$ such that $f(a) = b$. “Every output gets hit.”
What is a Bijection?

Definition: A function \(f : A \to B \) is one-to-one (an injection) when

For each \(a_1, a_2 \in A \), if \(f(a_1) = f(a_2) \), then \(a_1 = a_2 \).

Equivalently,

For each \(a_1, a_2 \in A \), if \(a_1 \neq a_2 \), then \(f(a_1) \neq f(a_2) \).

“When the inputs are different, the outputs are different.” (picture)

Definition: A function \(f : A \to B \) is onto (a surjection) when

For each \(b \in B \), there exists some \(a \in A \) such that \(f(a) = b \).

“Every output gets hit.”

Definition: A function \(f : A \to B \) is a bijection if it is both one-to-one and onto.
What is a Bijection?

Definition: A function $f : A \rightarrow B$ is **one-to-one** (an injection) when

For each $a_1, a_2 \in A$, if $f(a_1) = f(a_2)$, then $a_1 = a_2$.

Equivalently,

For each $a_1, a_2 \in A$, if $a_1 \neq a_2$, then $f(a_1) \neq f(a_2)$.

“When the inputs are different, the outputs are different.” (picture)

Definition: A function $f : A \rightarrow B$ is **onto** (a surjection) when

For each $b \in B$, there exists some $a \in A$ such that $f(a) = b$.

“Every output gets hit.”

Definition: A function $f : A \rightarrow B$ is a **bijection** if it is both one-to-one and onto.

The function from the previous page is ________________.
What is a Bijection?

Definition: A function $f : A \to B$ is **one-to-one** (an *injection*) when
For each $a_1, a_2 \in A$, if $f(a_1) = f(a_2)$, then $a_1 = a_2$.
Equivalently,
For each $a_1, a_2 \in A$, if $a_1 \neq a_2$, then $f(a_1) \neq f(a_2)$.
“*When the inputs are different, the outputs are different.*” (picture)

Definition: A function $f : A \to B$ is **onto** (a *surjection*) when
For each $b \in B$, there exists some $a \in A$ such that $f(a) = b$.
“*Every output gets hit.*”

Definition: A function $f : A \to B$ is a **bijection** if it is both one-to-one and onto.

The function from the previous page is ____________.

What is an example of a function that is onto and not one-to-one?
Example. Use a bijection to prove that \(\binom{n}{k} = \binom{n}{n-k} \) for \(0 \leq k \leq n \).
Example. Use a bijection to prove that \(\binom{n}{k} = \binom{n}{n-k} \) for \(0 \leq k \leq n \).

Proof. Let \(A \) be the set of \(k \)-subsets of \([n]\) and let \(B \) be the set of \((n-k)\)-subsets of \([n]\).

A bijection between \(A \) and \(B \) will prove \(\binom{n}{k} = |A| = |B| = \binom{n}{n-k} \).
Proving a Bijection

Example. Use a bijection to prove that $\binom{n}{k} = \binom{n}{n-k}$ for $0 \leq k \leq n$.

Proof. Let A be the set of k-subsets of $[n]$ and let B be the set of $(n - k)$-subsets of $[n]$.

A bijection between A and B will prove $\binom{n}{k} = |A| = |B| = \binom{n}{n-k}$.

Step 1: Find a candidate bijection.

Strategy. Try out a small (enough) example. Try $n = 5$ and $k = 2$.

$$\left\{ \{1, 2\}, \{1, 3\}, \{1, 4\}, \{1, 5\}, \{2, 3\}, \{2, 4\}, \{2, 5\}, \{3, 4\}, \{3, 5\}, \{4, 5\} \right\} \leftrightarrow \left\{ \{1, 2, 3\}, \{1, 2, 4\}, \{1, 2, 5\}, \{1, 3, 4\}, \{1, 3, 5\}, \{1, 4, 5\}, \{2, 3, 4\}, \{2, 3, 5\}, \{2, 4, 5\}, \{3, 4, 5\} \right\}$$
Example. Use a bijection to prove that $\binom{n}{k} = \binom{n}{n-k}$ for $0 \leq k \leq n$.

Proof. Let A be the set of k-subsets of $[n]$ and let B be the set of $(n-k)$-subsets of $[n]$.

A bijection between A and B will prove $\binom{n}{k} = |A| = |B| = \binom{n}{n-k}$.

Step 1: Find a candidate bijection.

Strategy. Try out a small (enough) example. Try $n = 5$ and $k = 2$.

\[
\begin{align*}
\{1, 2\}, \{1, 3\} & \leftrightarrow \{1, 2, 3\}, \{1, 2, 4\} \\
\{1, 4\}, \{1, 5\} & \leftrightarrow \{1, 2, 5\}, \{1, 3, 4\} \\
\{2, 3\}, \{2, 4\} & \leftrightarrow \{1, 3, 5\}, \{1, 4, 5\} \\
\{2, 5\}, \{3, 4\} & \leftrightarrow \{2, 3, 4\}, \{2, 3, 5\} \\
\{3, 5\}, \{4, 5\} & \leftrightarrow \{2, 4, 5\}, \{3, 4, 5\}
\end{align*}
\]

Guess: Let S be a k-subset of $[n]$. Perhaps $f(S) = \underline{\hspace{2cm}}$.

Step 2: Prove f is well defined.

The function f is well defined. If S is any k-subset of $[n]$, then S^c is a subset of $[n]$ with $n - k$ members. Therefore $f : A \rightarrow B$.

Proving a Bijection
Proving a Bijection

Step 2: Prove f is well defined.
The function f is well defined. If S is any k-subset of $[n]$, then S^c is a subset of $[n]$ with $n - k$ members. Therefore $f : A \to B$.

Step 3: Prove f is a bijection.
Strategy. Prove that f is both one-to-one and onto.
Proving a Bijection

Step 2: Prove f is well defined.

The function f is well defined. If S is any k-subset of $[n]$, then S^c is a subset of $[n]$ with $n - k$ members. Therefore $f : A \to B$.

Step 3: Prove f is a bijection.

Strategy. Prove that f is both one-to-one and onto.

f is 1-to-1: Suppose that S_1 and S_2 are two k-subsets of $[n]$ such that $f(S_1) = f(S_2)$. That is, $S_1^c = S_2^c$. This means that for all $i \in [n]$, then $i \notin S_1$ if and only if $i \notin S_2$. Therefore $S_1 = S_2$ and f is 1-to-1.
Proving a Bijection

Step 2: Prove \(f \) is well defined.

The function \(f \) is well defined. If \(S \) is any \(k \)-subset of \([n]\), then \(S^c \) is a subset of \([n]\) with \(n - k \) members. Therefore \(f : A \rightarrow B \).

Step 3: Prove \(f \) is a bijection.

Strategy. Prove that \(f \) is both one-to-one and onto.

\(f \) is 1-to-1: Suppose that \(S_1 \) and \(S_2 \) are two \(k \)-subsets of \([n]\) such that \(f(S_1) = f(S_2) \). That is, \(S_1^c = S_2^c \). This means that for all \(i \in [n] \), then \(i \notin S_1 \) if and only if \(i \notin S_2 \). Therefore \(S_1 = S_2 \) and \(f \) is 1-to-1.

\(f \) is onto: Suppose that \(T \in B \) is an \((n - k)\)-subset of \([n]\).

We must find a set \(S \in A \) satisfying \(f(S) = T \). Choose \(S = \ldots \). Then \(S \in A \) (why?), and \(f(S) = S^c = T \), so \(f \) is onto.

We conclude that \(f \) is a bijection and therefore, \(\binom{n}{k} = \binom{n}{n-k} \).
Using the Inverse Function

When $f : A \to B$ is 1-to-1, we can define f’s inverse. We write f^{-1}, and it is a function from $\text{rng}(f)$ to A. It is defined via f. If $f : a \mapsto b$, then $f^{-1} : b \mapsto a$.
Using the Inverse Function

When \(f : A \to B \) is 1-to-1, we can define \(f \)'s inverse. We write \(f^{-1} \), and it is a function from \(\text{rng}(f) \) to \(A \). It is defined via \(f \). If \(f : a \mapsto b \), then \(f^{-1} : b \mapsto a \).

Caution: When \(f \) is a function from \(A \) to \(B \), \(f^{-1} \) might not be a function from \(B \) to \(A \).
Using the Inverse Function

When \(f : A \to B \) is 1-to-1, we can define \(f \)'s inverse. We write \(f^{-1} \), and it is a function from \(\text{rng}(f) \) to \(A \).

It is defined via \(f \). If \(f : a \mapsto b \), then \(f^{-1} : b \mapsto a \).

Caution: When \(f \) is a function from \(A \) to \(B \), \(f^{-1} \) might not be a function from \(B \) to \(A \).

Theorem. Suppose that \(A \) and \(B \) are finite sets and that \(f : A \to B \) is a function. If \(f^{-1} \) is a function with domain \(B \), then \(f \) is a bijection.
Using the Inverse Function

When $f : A \to B$ is 1-to-1, we can define f’s inverse. We write f^{-1}, and it is a function from $\text{rng}(f)$ to A. It is defined via f. If $f : a \mapsto b$, then $f^{-1} : b \mapsto a$.

Caution: When f is a function from A to B, f^{-1} might not be a function from B to A.

Theorem. Suppose that A and B are finite sets and that $f : A \to B$ is a function. If f^{-1} is a function with domain B, then f is a bijection.

Proof. Since f^{-1} is only defined when f is 1-to-1, we need only prove that f is onto. Suppose $b \in B$. By assumption, $f^{-1}(b) \in A$ exists and $f(f^{-1}(b)) = b$. So f is onto, and is a bijection.
Using the Inverse Function

When $f : A \to B$ is 1-to-1, we can define f’s inverse. We write f^{-1}, and it is a function from $\text{rng}(f)$ to A. It is defined via f. If $f : a \mapsto b$, then $f^{-1} : b \mapsto a$.

Caution: When f is a function from A to B, f^{-1} might not be a function from B to A.

Theorem. Suppose that A and B are finite sets and that $f : A \to B$ is a function. If f^{-1} is a function with domain B, then f is a bijection.

Proof. Since f^{-1} is only defined when f is 1-to-1, we need only prove that f is onto. Suppose $b \in B$. By assumption, $f^{-1}(b) \in A$ exists and $f(f^{-1}(b)) = b$. So f is onto, and is a bijection.

Consequence: An alternative method for proving a bijection is:

- Find a rule $g : B \to A$ which always takes $f(a)$ back to a.
- Verify that the domain of g is *all of* B.
Using the Inverse Function

Example. There exists as many even-sized subsets of \([n]\) as odd-sized subsets of \([n]\).
Using the Inverse Function

Example. There exists as many even-sized subsets of \([n]\) as odd-sized subsets of \([n]\).

\[
\begin{align*}
\text{even:} & \quad \{ \emptyset, \{s_1, s_2\}, \{s_1, s_3\}, \{s_2, s_3\} \} \\
\text{odd:} & \quad \{ \{s_1\}, \{s_2\}, \{s_3\}, \{s_1, s_2, s_3\} \}
\end{align*}
\]
Using the Inverse Function

Example. There exists as many even-sized subsets of \([n]\) as odd-sized subsets of \([n]\).

- even: \(\{\emptyset, \{s_1, s_2\}, \{s_1, s_3\}, \{s_2, s_3\}\}\)
- odd: \(\{\{s_1\}, \{s_2\}, \{s_3\}, \{s_1, s_2, s_3\}\}\)

Proof. Let \(A\) be the set of even-sized subsets of \([n]\) and let \(B\) be the set of odd-sized subsets of \([n]\). Consider the function

\[
f(S) = \begin{cases} S - \{1\} & \text{if } 1 \in S \\ S \cup \{1\} & \text{if } 1 \notin S \end{cases}.
\]

- \(f : A \rightarrow B\) is a well defined function from \(A\) to \(B\) (why?).
Using the Inverse Function

Example. There exists as many even-sized subsets of \([n]\) as odd-sized subsets of \([n]\).

- **even:** \[\emptyset, \{s_1, s_2\}, \{s_1, s_3\}, \{s_2, s_3\}\]
- **odd:** \[\{s_1\}, \{s_2\}, \{s_3\}, \{s_1, s_2, s_3\}\]

Proof. Let \(A\) be the set of even-sized subsets of \([n]\) and let \(B\) be the set of odd-sized subsets of \([n]\). Consider the function

\[
f(S) = \begin{cases}
S - \{1\} & \text{if } 1 \in S \\
S \cup \{1\} & \text{if } 1 \notin S
\end{cases}.
\]

- \(f : A \to B\) is a well defined function from \(A\) to \(B\) (why?).
- \(f^{-1}\) exists and equals \(f\) (why?)
Using the Inverse Function

Example. There exists as many even-sized subsets of $[n]$ as odd-sized subsets of $[n]$.

- **even:** $\left\{ \emptyset, \{s_1, s_2\}, \{s_1, s_3\}, \{s_2, s_3\} \right\}$
- **odd:** $\left\{ \{s_1\}, \{s_2\}, \{s_3\}, \{s_1, s_2, s_3\} \right\}$

Proof. Let A be the set of even-sized subsets of $[n]$ and let B be the set of odd-sized subsets of $[n]$. Consider the function

$$f(S) = \begin{cases} S - \{1\} & \text{if } 1 \in S \\ S \cup \{1\} & \text{if } 1 \notin S \end{cases}.$$

- $f : A \rightarrow B$ is a well defined function from A to B (why?).
- f^{-1} exists and equals f (why?) and has domain B (why?).
Using the Inverse Function

Example. There exists as many even-sized subsets of \([n]\) as odd-sized subsets of \([n]\).

\[
\begin{align*}
evven & : \{ \emptyset, \{s_1, s_2\}, \{s_1, s_3\}, \{s_2, s_3\} \} \\
\text{odd} & : \{ \{s_1\}, \{s_2\}, \{s_3\}, \{s_1, s_2, s_3\} \}
\end{align*}
\]

Proof. Let \(A\) be the set of even-sized subsets of \([n]\) and let \(B\) be the set of odd-sized subsets of \([n]\). Consider the function

\[
f(S) = \begin{cases}
S - \{1\} & \text{if } 1 \in S \\
S \cup \{1\} & \text{if } 1 \notin S
\end{cases}
\]

\(\implies \) \(f : A \rightarrow B\) is a well defined function from \(A\) to \(B\) (why?).

\(\implies\) \(f^{-1}\) exists and equals \(f\) (why?) and has domain \(B\) (why?). Therefore, \(f\) is a bijection, proving the statement, as desired.
Using the Inverse Function

Example. There exists as many even-sized subsets of \([n]\) as odd-sized subsets of \([n]\).

- **even:** \{\emptyset, \{s_1, s_2\}, \{s_1, s_3\}, \{s_2, s_3\}\}
- **odd:** \{\{s_1\}, \{s_2\}, \{s_3\}, \{s_1, s_2, s_3\}\}

Proof. Let \(A\) be the set of even-sized subsets of \([n]\) and let \(B\) be the set of odd-sized subsets of \([n]\). Consider the function

\[
f(S) = \begin{cases}
S - \{1\} & \text{if } 1 \in S \\
S \cup \{1\} & \text{if } 1 \notin S
\end{cases}.
\]

\(f : A \to B\) is a well defined function from \(A\) to \(B\) (why?).

\(f^{-1}\) exists and equals \(f\) (why?) and has domain \(B\) (why?). Therefore, \(f\) is a bijection, proving the statement, as desired.

Eyebrow-Raising Consequence: \[\sum_{k=0}^{n} (-1)^k \binom{n}{k} = 0.\]