Combinatorial statistics

Given a set of combinatorial objects \(\mathcal{A} \), a **combinatorial statistic** is an integer given to every element of the set.

In other words, it is a function \(\mathcal{A} \rightarrow \mathbb{Z}_{\geq 0} \).

Example. Let \(\mathcal{S} \) be the set of subsets of \(\{1, 2, 3\} \). The cardinality of a set is a combinatorial statistic on \(\mathcal{S} \).

\[
\begin{align*}
|\emptyset| &= 0 & |\{1\}| &= 1 & |\{2\}| &= 1 & |\{3\}| &= 1 \\
|\{1, 2\}| &= 2 & |\{1, 3\}| &= 2 & |\{2, 3\}| &= 2 & |\{1, 2, 3\}| &= 3
\end{align*}
\]

Combinatorial statistics provide a *refinement* of counting.

\[\begin{array}{c|c|c|c|c}
8 & 0 & 1 & 2 & 3 \\
\hline
1 & 3 & 3 & 1
\end{array}\]

\[\emptyset \quad \{1\} \quad \{2\} \quad \{3\} \quad \{1, 2\} \quad \{1, 3\} \quad \{2, 3\} \quad \{1, 2, 3\}\]
More statistics

Questions involving combinatorial statistics:

- What is the *distribution* of the statistics?
- What is the *average size* of an object in the set?
- Which statistics have the same distribution?
 - Insight into their structure.
 - Provides non-trivial bijections in the set?

A especially rich playground involves *permutation statistics*.

Representations of permutations

One-line notation: $\pi = 4 \ 1 \ 6 \ 2 \ 5 \ 3$
Cycle notation: $\pi = (1 \ 4 \ 2)(3 \ 6)(5)$

String diagram:

(only two crossings at a time)
Descent statistic

Definition: Let $\pi = \pi_1\pi_2 \cdots \pi_n$ be a permutation. A **descent** is a position i such that $\pi_i > \pi_{i+1}$. Define $\text{des}(\pi)$ to be the number of descents in π.

Example. When $\pi = 416253$, $\text{des}(\pi) = 3$ since $4 \downarrow 1$, $6 \downarrow 2$, $5 \downarrow 3$.

Question: How many n-permutations have d descents?

<table>
<thead>
<tr>
<th>$n \setminus d$</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>4</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>11</td>
<td>11</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>26</td>
<td>66</td>
<td>26</td>
<td>1</td>
</tr>
</tbody>
</table>

What are the possible values for $\text{des}(\pi)$?

Note the symmetry. If π has d descents, its reverse $\hat{\pi}$ has ____ descents.

These are the **Eulerian numbers**.
Eulerian Numbers

Definition: \(A_{n,k} \) = number of \(n \)-permutations with \(k - 1 \) descents.

Theorem: \(A_{n,k+1} = (k + 1)A_{n-1,k+1} + (n - k)A_{n-1,k} \)

Proof. Ask: How many \(n \)-permutations have \(k \) descents?

LHS: \(A_{n,k+1} \), of course!

RHS: Insert the number \(n \) into an \((n - 1)\)-permutation.

When \(n \) is inserted into an \((n - 1)\)-permutation with \(d \) descents, the resulting \(n \)-permutation either has

- \(d \) descents (If \(n \) inserted in a position that is a descent or at end.)
- \(d + 1 \) descents (If \(n \) inserted in a position that is not a descent.)

Conclusion: An \(n \)-perm with \(k \) descents can arise by inserting \(n \):

- into a perm with \(k \) existing descents in \((k + 1)A_{n-1,k+1}\) ways.
- into a perm with \(k - 1 \) existing descents in \((n - k)A_{n-1,k}\) ways.
Eulerian Numbers

The initial conditions $A_{n,1} = 1$ and $A_{n,n} = 1$ for all n along with the recurrence

$$A_{n,k+1} = (k+1)A_{n-1,k+1} + (n-k)A_{n-1,k}$$

allow us to fill the chart:

<table>
<thead>
<tr>
<th>n</th>
<th>$A_{n,1}$</th>
<th>$A_{n,2}$</th>
<th>$A_{n,3}$</th>
<th>$A_{n,4}$</th>
<th>$A_{n,5}$</th>
<th>$A_{n,6}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>4</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>11</td>
<td>11</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>26</td>
<td>66</td>
<td>26</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>57</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

Fact: The Eulerian numbers satisfy the following identities.

$$A_{n,k} = \sum_{i=0}^{k} (-1)^i \binom{n+1}{i} (k-i)^n.$$

$$S(n, r) = \frac{1}{r!} \sum_{k=0}^{r} A_{n,k} \binom{n-k}{r-k}$$

Inversion statistic

Definition: Let $\pi = \pi_1\pi_2 \cdots \pi_n$ be a permutation. An *inversion* is a pair $i < j$ such that $\pi_i > \pi_j$.

Define $\text{inv}(\pi)$ as the number of inversions in π.

Example. When $\pi = 416253$, $\text{inv}(\pi) = 7$ since $4 > 1$, $4 > 2$, $4 > 3$, $6 > 2$, $6 > 5$, $6 > 3$, $5 > 3$.

In a string diagram $\text{inv}(\pi) =$ number of crossings.

In a matrix diagram $\text{inv}(\pi)$, draw *Rothe diagram*:

$$
\begin{array}{cccccc}
\text{inv}(12) &= 0 & \text{inv}(123) &= _ & \text{inv}(213) &= _ & \text{inv}(312) &= _ \\
\text{inv}(21) &= 1 & \text{inv}(132) &= _ & \text{inv}(231) &= _ & \text{inv}(321) &= _
\end{array}
$$

<table>
<thead>
<tr>
<th>n \backslash i</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>3</td>
<td>5</td>
<td>6</td>
<td>5</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

What are the possible values for $\text{inv}(\pi)$?

The inversion number is a good way to count how “far away” a permutation is from the identity.
Gaussian polynomials

Definition: \(b_{n,k} \) = number of \(n \)-permutations with \(k \) inversions.

Theorem: Let \(k \leq n \). Then \(b_{n+1,k} = b_{n+1,k-1} + b_{n,k} \)

Proof. Ask: How many \((n+1)\)-permutations have \(k \) descents?

LHS: \(b_{n+1,k} \), evidently!

RHS: Condition on the position of \((n+1)\).

The \((n+1)\)-perms with \(k \) descents and \((n+1)\) in the last position are in bijection with ______________________, and are counted by ___.

If \((n+1)\) is not in the last position, switch it with its right neighbor.

We recover an \((n+1)\)-permutation with \(k - 1 \) descents with the added condition that ___________________________.

Since \(k \leq n \), then every \((n+1)\)-permutation with \(k - 1 \) inversions satisfy this condition, (WHY?)

We conclude that there are \(b_{n+1,k-1} \) ways in which this can happen.
Major index

Definition: Let $\pi = \pi_1\pi_2 \cdots \pi_n$ be a permutation.

Define $\text{maj}(\pi)$, the **major index** of π, to be sum of the descents of π.

[Named after Major Percy MacMahon. (British army, early 1900’s)]

Example. When $\pi = 416253$, $\text{maj}(\pi) = 9$ since the descents of π are in positions 1, 3, and 5.

\[
\begin{align*}
\text{maj}(12) &= 0 & \text{maj}(123) &= _ & \text{maj}(213) &= _ & \text{maj}(312) &= _ \\
\text{maj}(21) &= 1 & \text{maj}(132) &= _ & \text{maj}(231) &= _ & \text{maj}(321) &= _
\end{align*}
\]

<table>
<thead>
<tr>
<th>$n \backslash m$</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>3</td>
<td>5</td>
<td>6</td>
<td>5</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

What are the possible values for $\text{maj}(\pi)$?

The distribution of $\text{maj}(\pi)$ IS THE SAME AS the distribution of $\text{inv}(\pi)$!

A statistic that has the same distribution as inv is called **Mahonian**.
There’s always more to learn!!!

Theorem: inv and maj are equidistributed on S_n.

Proofs exist using generating functions and using bijections.

- Find a bijection $f : S_n \rightarrow S_n$ such that $\text{maj}(\pi) = \text{inv}(f(\pi))$.

References :