Indistinguishable objects in indistinguishable boxes

When placing k indistinguishable objects into n indistinguishable boxes, what matters?

We are partitioning the **integer** k instead of the set $[k]$.

Example. What are the partitions of 6?

Definition: $P(k, i)$ is the number of partitions of k into i parts.

Example. We saw $P(6, 1) = 1$, $P(6, 2) = 3$, $P(6, 3) = 3$, $P(6, 4) = 2$, $P(6, 5) = 1$, and $P(6, 6) = 1$.

Definition: $P(k)$ is the number of partitions of k into any number of parts.

Example. $P(6) = 1 + 3 + 3 + 2 + 1 + 1 = 11$.
Question: In how many ways can we place \(k \) objects in \(n \) boxes?

<table>
<thead>
<tr>
<th>Distributions of (k) objects in (n) boxes</th>
<th>Restrictions on # objects received</th>
</tr>
</thead>
<tbody>
<tr>
<td>none</td>
<td>(\leq 1)</td>
</tr>
<tr>
<td>distinct distinct</td>
<td>(n^k)</td>
</tr>
<tr>
<td>identical distinct</td>
<td>(\binom{n}{k})</td>
</tr>
<tr>
<td>distinct identical</td>
<td>(\sum S(k, i))</td>
</tr>
<tr>
<td>identical identical</td>
<td>(\sum P(k, i))</td>
</tr>
</tbody>
</table>

\(P(k, n) \) counts ways to place \(k \) identical obj. into \(n \) identical boxes.

How many ways to distribute identical objects into identical boxes

- If there is exactly one item in each box?
- If there is at most one item in each box?
- What about with no restrictions?
Example. Suppose that in this class, 14 students play soccer and 17 students play basketball. How many students play a sport?

Solution.

Let S be the set of students who play soccer and B be the set of students who play basketball. Then, $|S \cup B| = |S| + |B|$.
Principle of Inclusion-Exclusion

When \(A = A_1 \cup \cdots \cup A_k \subset \mathcal{U} \) (\(\mathcal{U} \) for universe) and the sets \(A_i \) are **pairwise disjoint**, we have \(|A| = |A_1| + \cdots + |A_k|\).

When \(A = A_1 \cup \cdots \cup A_k \subset \mathcal{U} \) and the \(A_i \) are **not** pairwise disjoint, we must apply the principle of inclusion-exclusion to determine \(|A|\):

\[
|A_1 \cup A_2| = |A_1| + |A_2| - |A_1 \cap A_2|
\]

\[
|A_1 \cup A_2 \cup A_3| = |A_1| + |A_2| + |A_3| - |A_1 \cap A_2| - |A_1 \cap A_3| - |A_2 \cap A_3| + |A_1 \cap A_2 \cap A_3|
\]

\[
|A_1 \cup \cdots \cup A_m| = \sum |A_i| - \sum |A_i \cap A_j| + \sum |A_i \cap A_j \cap A_k| \cdots
\]

It may be more convenient to apply inclusion/exclusion where the \(A_i \) are **forbidden** subsets of \(\mathcal{U} \), in which case ________________.
Example. Find the number of integers between 1 and 1000 that are not divisible by 5, 6, or 8.

Solution. Let \(\mathcal{U} = \{ n \in \mathbb{Z} \text{ such that } 1 \leq n \leq 1000 \} \).
Let \(A_1 \subset \mathcal{U} \) be the multiples of 5, \(A_2 \subset \mathcal{U} \) be the multiples of 6, and \(A_3 \subset \mathcal{U} \) be the multiples of 8. We want \(|\mathcal{U}| - |A_1 \cup A_2 \cup A_3| \).

In words, \(A_1 \cap A_2 \) is the set of integers which are \(A_1 \cap A_3 \) is \(A_2 \cap A_3 \) is and \(A_1 \cap A_2 \cap A_3 \) is the set of integers which are

Now calculate: \(|A_1| = \quad |A_2| = \quad |A_3| = \)
\(|A_1 \cap A_2| = \quad |A_1 \cap A_3| = \quad |A_2 \cap A_3| = \)
\(|A_1 \cap A_2 \cap A_3| = \)

And finally: So \(|\mathcal{U}| - |A_1 \cup A_2 \cup A_3| = \)
Combinations with Repetitions

Quick review

1. How many ways are there to choose \(k \) elements out of the set \(\{1 \cdot a_1, 1 \cdot a_2, \ldots, 1 \cdot a_n\} \)?

2. How many ways are there to choose \(k \) elements out of the set \(\{k \cdot a_1, k \cdot a_2, \ldots, k \cdot a_n\} \)? (really \(\{\infty \cdot a_1, \infty \cdot a_2, \ldots, \infty \cdot a_n\} \))

What we would like to calculate is:

In how many ways can we choose \(k \) elements out of an arbitrary multiset?

Now, it’s as easy as PIE.
Example. Determine the number of 10-combinations of the multiset $S = \{3 \cdot a, 4 \cdot b, 5 \cdot c\}$.

Game plan: Let \mathcal{U} be the set of 10-combs of $\{\infty \cdot a, \infty \cdot b, \infty \cdot c\}$. Use PIE to remove the 10-combs that violate the conditions of S.

Define A_1 to be 10-combs that include at least ___ a’s.
Define A_2 to be 10-combs that include at least ___ b’s.
Define A_3 to be 10-combs that include at least ___ c’s.

In words, $A_1 \cap A_2$ are those 10-combs that
$A_1 \cap A_3$:
$A_2 \cap A_3$:
$A_1 \cap A_2 \cap A_3$

Now calculate: $|\mathcal{U}| = \quad |A_1| = \quad |A_2| = \quad |A_3| = \quad |A_1 \cap A_2| = \quad |A_1 \cap A_3| = \quad |A_2 \cap A_3| = \quad |A_1 \cap A_2 \cap A_3| = \quad$

And finally: So $|\mathcal{U}| - |A_1 \cup A_2 \cup A_3| = \quad$
At a party, 10 gentlemen check their hats. They “have a good time”, and are each handed a hat on the way out. In how many ways can the hats be returned so that no one is returned his own hat?

This is a derangement of ten objects.

Definition: An *n*-derangement is an *n*-permutation $\pi = p_1 p_2 \cdots p_n$ such that $p_1 \neq 1$, $p_2 \neq 2$, \cdots, $p_n \neq n$.

Note: A derangement is a permutation without fixed points $\pi(i) = i$.

Notation: We let D_n be the number of all *n*-derangements.

When you see D_n, think combinatorially: “The number of ways to return *n* hats to *n* people so no one gets his/her own hat back”
Calculating the number of derangements

Example. Calculate D_n.

Solution. Let \mathcal{U} be the set of all n-permutations. Remove bad permutations using PIE. For all i from 1 to n, define A_i to be n-perms where $p_i = i$.

In words, $A_i \cap A_j$ are n-perms where $A_i \cap A_j \cap A_k$ are n-perms where In general, $A_{i_1} \cap \cdots \cap A_{i_k}$ are n-perms with $p_{i_1} = i_1$, \cdots, $p_{i_k} = i_k$.

Now calculate: $|\mathcal{U}| = |A_1| = |A_2| =$

For all i and j, $|A_i \cap A_j| =$

When intersecting k sets, $|A_{i_1} \cap \cdots \cap A_{i_k}| =$

Recall: $|A_1 \cup \cdots \cup A_n| = \sum |A_i| - \sum |A_i \cap A_j| + \sum |A_i \cap A_j \cap A_k| \cdots$

Therefore, $D_n = |\mathcal{U}| - |A_1 \cup \cdots \cup A_n| =$
Randomly returning hats

Upon simplification, we see
\[
D_n = n! - \binom{n}{1}(n-1)! + \binom{n}{2}(n-2)! - \cdots + (-1)^n \binom{n}{n}0!
\]
\[
= n! - \frac{n!}{1!} + \frac{n!}{2!} - \cdots + (-1)^n \frac{n!}{n!}
\]
\[
= n! \left[1 - \frac{1}{1!} + \frac{1}{2!} - \frac{1}{3!} + \cdots + (-1)^n \frac{1}{n!} \right]
\]

Recall: Taylor series expansion of \(e^x \):
\[
e^x = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots.
\]
Plug in \(x = -1 \) and truncate after \(n \) terms to see that
\[
e^{-1} \approx \left[1 - \frac{1}{1!} + \frac{1}{2!} - \frac{1}{3!} + \cdots + (-1)^n \frac{1}{n!} \right]
\]

Conclusion: If \(n \) people go to a party and the hats are passed back randomly, the probability that no one gets his or her hat back at the party is \(D_n/n! \), which is approximately \(1/e \approx 37\% \).
Recall: The combinatorial interpretation of D_n is: “The number of ways to return n hats to n people so no one gets his/her own hat back”

Example. Prove the following recurrence relation for D_n combinatorially.

$$D_n = (n - 1)(D_{n-2} + D_{n-1})$$
A formula for Stirling numbers

Recall: $S(n, k) = \binom{n}{k}$ is the number of partitions of the set $[n]$ into exactly k parts, and $k!S(n, k)$ is the number of onto functions $[n] \rightarrow [k]$.

Question: What is a formula for $S(n, k)$?

Solution. We will find the number of surjections from $[n]$ to $[k]$. Use PIE with $\mathcal{U} =$ set of all functions from $[n]$ to $[k]$. We will remove the “bad” functions where the range is not $[k]$.

Define A_i be the set of functions $f : [n] \rightarrow [k]$ where i is not “hit”.

In words, $A_{i_1} \cap \cdots \cap A_{i_j}$ are functions where none of i_1 through i_j are elements of the image.

We calculate: $|\mathcal{U}| = k^n$, $|A_i| = (k - 1)^n$, $|A_i \cap A_j| = (k - 2)^n$.

When intersecting j sets, $|A_{i_1} \cap \cdots \cap A_{i_j}| = (k - j)^n$.

Therefore, $k!S(n, k) = \sum_{j=0}^{k} (-1)^j \binom{k}{j} (k - j)^n$; we conclude $S(n, k) = \frac{1}{k!} \sum_{j=0}^{k} (-1)^j \binom{k}{j} (k - j)^n$.