What is a Combinatorial Proof?

Definition: A **combinatorial interpretation** of a numerical quantity is a set of combinatorial objects that is counted by the quantity.

Example. We can choose \(k \) objects out of \(n \) total objects in \(\binom{n}{k} \) ways. Use this fact “backwards” by interpreting an occurrence of \(\binom{n}{k} \) as the number of ways to choose \(k \) objects out of \(n \).

This leads to my favorite kind of proof:

Definition: A **combinatorial proof** of an identity \(X = Y \) is a proof by counting (!). You find a set of objects that can be interpreted as a combinatorial interpretation of both the **left hand side (LHS)** and the **right hand side (RHS)** of the equation. As both sides of the equation count the same set of objects, they must be equal!

- It is important to get the set of objects right.
- To do this, you must ask a good question: “In how many ways...”
Example. Prove Equation (2.2): For $0 \leq k \leq n$, $\binom{n}{k} = \binom{n}{n-k}$.
(We already know a bijective proof of this fact.)

Analytic Proof:

$$\binom{n}{k} = \frac{n!}{k!(n-k)!} = \frac{n!}{(n-k)!(n-(n-k))!} = \binom{n}{n-k}$$

Combinatorial Proof:

Question: In how many ways can we adopt k of n cats available for adoption at the animal shelter?

Answer 1: Choose k of the n cats to adopt in $\binom{n}{k}$ ways.

Answer 2: Choose $n - k$ of the n cats to NOT adopt in $\binom{n}{n-k}$ ways.

Because the two quantities count the same set of objects in two different ways, the two answers are equal. □
Another Simple Combinatorial Proof

Example. Prove Equation (2.4): \(k\binom{n}{k} = n\binom{n-1}{k-1} \).

Analytic Proof:

Combinatorial Proof:

Question: In how many ways can we choose from \(n \) club members a committee of \(k \) members with a chairperson?

Answer 1:

Answer 2:

Because the two quantities count the same set of objects in two different ways, the two answers are equal. \(\square \)
Example. Prove Theorem 2.2.1: \(\binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1} \).

Combinatorial Proof:

Question: In how many ways can we choose \(k \) flavors of ice cream if \(n \) different choices are available?

Answer 1:

Answer 2:

Because the two quantities count the same set of objects in two different ways, the two answers are equal. □
Summing Binomial Coefficients

Example. Prove Equation (2.3): \(\binom{n}{0} + \binom{n}{1} + \binom{n}{2} + \cdots + \binom{n}{n} = 2^n \).

Analytic Proof:

Combinatorial Proof:

Question: How many subsets of \(\{1, 2, \ldots, n\} \) are there?

Answer 1: Condition on how many elements are in a subset.

Answer 2:

Because the two quantities count the same set of objects in two different ways, the two answers are equal.

—Worksheet—