Theorem. Let G be a planar graph. There exists a proper 6-coloring of G.

Proof. Let G be a the smallest planar graph (by number of vertices) that has no proper 6-coloring.

By Theorem 8.1.7, there exists a vertex v in G that has degree five or less. $G \setminus v$ is a planar graph smaller than G, so it has a proper 6-coloring.

Color the vertices of $G \setminus v$ with six colors; the neighbors of v in G are colored by at most five different colors.

We can color v with a color not used to color the neighbors of v, and we have a proper 6-coloring of G, contradicting the definition of G.
The Five Color Theorem

Theorem. Let G be a planar graph. There exists a proper 5-coloring of G.

Proof. Let G be the smallest planar graph (by number of vertices) that has no proper 5-coloring.

By Theorem 8.1.7, there exists a vertex v in G that has degree five or less. $G \setminus v$ is a planar graph smaller than G, so it has a proper 5-coloring.

Color the vertices of $G \setminus v$ with five colors; the neighbors of v in G are colored by at most five different colors.

If they are colored with only four colors, we can color v with a color not used to color the neighbors of v, and we have a proper 5-coloring of G, contradicting the definition of G.
The Kempe Chains Argument

Otherwise the neighbors of \(v \) are all colored differently. We will work to modify the coloring on \(G \setminus v \) so that only four colors are used.

Consider the subgraphs \(H_{1,3} \) and \(H_{2,4} \) of \(G \setminus v \) constructed as follows: Let \(V_{1,3} \) be the set of vertices in \(G \setminus v \) colored with colors 1 or 3. Let \(V_{2,4} \) be the set of vertices in \(G \setminus v \) colored with colors 2 or 4. Let \(H_{1,3} \) be the induced subgraph of \(G \) on \(V_{1,3} \). (Define \(H_{2,4} \) similarly)
The Kempe Chains Argument

Definition: A Kempe chain is a path in $G \setminus v$ between two non-consecutive neighbors of v such that the colors on the vertices of the path alternate between the colors on those two neighbors.

In the example above, $3 \rightarrow 7 \rightarrow 8 \rightarrow 9 \rightarrow 10 \rightarrow 1$ is a Kempe chain: the colors alternate between red and green and $1, 3$ not consecutive.

Either v_1 and v_3 are in the same component of $H_{1,3}$ or not. If they are, there is a Kempe chain between v_1 and v_3. If they are not, (say v_1 is in component C_1 and v_3 is in C_3) then swap colors 1 and 3 in C_1. (Here we show C_2 and C_4)
The Kempe Chains Argument

Claim. This remains a proper coloring of $G \setminus v$.

Proof. We need to check that the recoloring does not have two like-colored vertices adjacent.

In C_1, there are only vertices of color 1 and 3 and recoloring does not change that no two adjacent vertices are colored differently.

And, by construction, no vertex adjacent to a vertex in C_1 is colored 1 or 3. This is true before AND after recoloring.

\[\square\]
The Kempe Chains Argument

So **either** there is a Kempe chain between \(v_1 \) and \(v_3 \) **or** we can swap colors so that \(v \)’s neighbors are colored only using four colors.

Similarly, **either** there is a Kempe chain between \(v_2 \) and \(v_4 \) **or** we can swap colors to color \(v \)’s neighbors with only four colors.

Question. Can we have both a \(v_1-v_3 \) and a \(v_2-v_4 \) Kempe chain?

There are no edge crossings in the graph drawing, so there would exist a vertex_______________________________.

This cannot exist, so it must be possible to swap colors and be able to place a fifth color on \(v \), contradicting the definition of \(G \).
Modifications of Graphs

Definition: **Deletion**

\[G \setminus v \ (G \text{ delete } v) \]: Remove \(v \) from the graph and all incident edges.

\[G \setminus e \ (G \text{ delete } e) \]: Remove \(e \) from the graph.

Definition: **Contraction**

\[G/e \ (G \text{ contract } e) \]: If \(e = vw \), coalesce \(v \) and \(w \) into a super-vertex adjacent to all neighbors of \(v \) and \(w \). \([This \ may \ produce \ a \ multigraph.]\]

Definition: A graph \(H \) is a minor of a graph \(G \) if \(H \) can be obtained from \(G \) by a sequence of edge deletions and/or edge contractions. \([“Minor” \ suggests \ smaller: \ H \ is \ smaller \ than \ G.]\)

Note. Any subgraph of \(G \) is also a minor of \(G \).
Modifications of Graphs

Definition: A **subdivision** of an edge e is the replacement of e by a path of length at least two. [Like adding vertices in the middle of e.]

Definition: A **subdivision** of a graph H is the result of zero or more sequential subdivisions of edges of H.

Note. If G is a subdivision of H, then G is at least as large as H.

Note. If G is a subdivision of H, then H is a minor of G. (Contract any edges that had been subdivided!)

Note. The converse is not necessarily true.
Kuratowski’s Theorem

Theorem. Let H be a subgraph of G. If H is nonplanar, then G is nonplanar.

Theorem. Let G be a subdivision of H. If H is nonplanar, then G is nonplanar.

Corollary. If G contains a subdivision of a nonplanar graph, then G is nonplanar.

Theorem. (Kuratowski, 1930) A graph is planar if and only if it contains no subdivision of K_5 or $K_{3,3}$.

Theorem. (Kuratowski variant) A graph G is planar if and only if neither K_5 nor $K_{3,3}$ is a minor of G.
Kuratowski’s Theorem

To prove that a graph G is planar, find a planar embedding of G. To prove that a graph G is non-planar, (a) find a subgraph of G that is isomorphic to a subdivision of K_5 or $K_{3,3}$, or (b) successively delete and contract edges of G to show that K_5 or $K_{3,3}$ is a minor of G.

Practice on the Petersen graph. (Here, have some copies!)