Path graph \(P_n \): The path graph \(P_n \) has \(n + 1 \) vertices,
\[V = \{v_0, v_1, \ldots, v_n\} \] and \(n \) edges,
\[E = \{v_0v_1, v_1v_2, \ldots, v_{n-1}v_n\}. \]

The length of a path is the number of edges in the path.

Cycle graph \(C_n \): The cycle graph \(C_n \) has \(n \) vertices,
\[V = \{v_1, \ldots, v_n\} \] and \(n \) edges,
\[E = \{v_1v_2, v_2v_3, \ldots, v_{n-1}v_n, v_nv_1\}. \]

We often try to find and/or count paths and cycles in a graph.
Complete graph K_n: The complete graph K_n has n edges, $V = \{v_1, \ldots, v_n\}$ and has an edge connecting every pair of distinct vertices, for a total of $\binom{n}{2}$ edges.

Definition: a bipartite graph is a graph where the vertex set can be broken into two parts such that there are no edges between vertices in the same part.

Complete bipartite graph $K_{m,n}$: The complete bipartite graph $K_{m,n}$ has $m + n$ vertices $V = \{v_1, \ldots, v_m, w_1, \ldots, w_n\}$ and an edge connecting each v vertex to each w vertex.
Families of Graphs

- **Wheel graph** W_n: The wheel graph W_n has $n+1$ vertices $V = \{v_0, v_1, \ldots, v_n\}$. Arrange and connect the last n vertices in a cycle (the rim of the wheel). Place v_0 in the center (the hub), and connect it to every other vertex.

- **Star graph** St_n: The star graph St_n has $n+1$ vertices $V = \{v_0, v_1, \ldots, v_n\}$ and n edges $\{v_0v_1, v_0v_2, \ldots, v_0v_n\}$.

- **Cube graph** \Box_n: The cube graph in n dimensions, \Box_n, has 2^n vertices. We index the vertices by binary numbers of length n. We connect two vertices when their binary numbers differ by exactly one digit.
Two graphs we will see on a consistent basis are:

Petersen graph P

Grötzsch graph Gr
Definition: The **platonic solids** are the tetrahedron, cube, octahedron, icosahedron, and dodecahedron. They are the only regular convex polyhedra made of regular polygons.

Definition: The **Schlegel diagram** of a polyhedron is a planar 2D graph that represents a 3D object, where vertices of the graph represent vertices of the polyhedron, and edges of the graph represent the edges of the polyhedron.

The **Platonic graphs** are the Schlegel diagrams of the five platonic solids.
When are two graphs the same?

Two graphs G_1 and G_2 are **equal** ($G_1 = G_2$) if they have the exact same vertex sets and edge sets. The graphs G_1 and G_2 are **isomorphic** ($G_1 \cong G_2$) if there exists a bijection $\varphi : V(G_1) \to V(G_2)$ such that $v_i v_j$ is an edge of G_1 iff $\varphi(v_i) \varphi(v_j)$ is an edge of G_2.

In this course, we will spend a large amount of time trying to figure out whether two given graphs are the same.

Side note: For a graph, the set of homomorphisms (isomorphisms into itself) is a measure of the symmetry of the graph. Ex. ⭐️
The **union** of two graphs $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ can mean two different things:

- When the vertex sets are different, the **(disjoint) union** H of G_1 and G_2 is formed by placing the graphs side by side. In this case, $H = (V_1 \cup V_2, E_1 \cup E_2)$.

- When the vertex sets are the same, then the **(edge) union** H of G_1 and G_2 contains every edge of both E_1 and E_2. In this case, $H = (V, E_1 \cup E_2)$.

The **complement** G^c or \overline{G} of a graph $G = (V, E)$ is a graph with the same vertex set. Its edge set contains all edges **NOT** in G.

If $G = (V, E_1)$ and $G^c = (V, E_2)$, then $E_1 \cup E_2 = E(K_n)$, and $E_1 \cap E_2 = \emptyset$.
Subgraphs

A subgraph H of a graph G is a graph where every vertex of H is a vertex of G, and that every edge of H is an edge of G.

★ If edge e of G is in H, then the endpoints of e must also be in H.

A subgraph H is a proper subgraph if $H \neq G$.

If G_1 and G_2 are two graphs, we say that G_1 contains G_2 if there exists a subgraph H of G_1 such that H is isomorphic to G_2.

Example. Show that the wheel W_6 contains a cycle of length 3, 4, 5, 6, and 7.
Induced Subgraphs

An **induced subgraph** H of a graph G is determined by a set of vertices $W \subseteq V(G)$. Define H to have as its vertex set, W, and as its edge set, the set of edges from $E(G)$ between vertices in W.

Induced subgraphs of G are always subgraphs of G, but not vice versa.