The Enumeration of Fully Commutative Affine Permutations

Christopher R. H. Hanusa (Queens College, CUNY) and Brant C. Jones (James Madison University)

Permutations and affine permutations

A Coxeter group is a group with
- Generators: \{s_1, s_2, \ldots, s_n\}
- Relations: \(r_i^2 = 1 \), \((s_ils_j)^{m_{ij}} = 1 \) where \(m_{ij} \) is 2 or \(\infty \)
- \(m_{ij} = 2 \): \((s_is_j)^2 = 1 \) \(\iff \ s_i s_j = s_j s_i \) (they commute)
- \(m_{ij} = 3 \): \((s_is_j)^3 = 1 \) \(\iff \ s_i s_j s_i = s_j s_i s_j \) (braid relation)

An element’s length is the number of generators in its shortest expression.

(Finite) Permutations \(S_n \)

- Write an element \(w \in S_n \) in 1-line notation as a permutation of \(\{1, \ldots, n\} \).
- Generators transpose adjacent entries: \(s_i : (i) \rightarrow (i+1) \).
- Example. In \(S_4 \), \(s_1 s_2 = 214536 \).

Affine Permutations \(\tilde{S}_n \)

- Write an element \(w \in \tilde{S}_n \) in 1-line notation as a permutation of \(\mathbb{Z} \).
- Generators infinitely many pairs of entries:
 - \(\{(i), (i+1)\} \), \(\{(i), (i-1)\} \), \(\ldots \)
 - \(w \) is defined by the window \([w(1), w(2), \ldots, w(n)] \).
- Example. In \(\tilde{S}_3 \), \(\tilde{s_1} \tilde{s_2} \tilde{s_1} = 20134567910 \).

Fully commutative elements

An element in a Coxeter group is fully commutative if it has only one reduced expression (up to commutation relations).

- No BRAIDS ALLOWED!

Example. In \(S_2 \), \(s_1 s_2 s_1 \) is not fully commutative because \(s_1 s_2 s_1 = s_1 s_2 \) \(\neq s_2 s_1 \).

- GOAL: Enumerate fully commutative affine permutations by Coxeter length.

Game plan

- (Green, 2002) characterizes when \(w \in S_n \) is fully commutative.
 - \(w \) is fully commutative \(\iff \ w \) is 321-avoiding.
 - For example, \(w = 4132 \) is 321-avoiding.
 - \(\emptyset \) is 321-avoiding.

- Write \(w = w^+ w^- \), where \(w^+ \in S_n \) and \(w^- \in \tilde{S}_n \).
 - For \(w = [-1; 2, 3, 4, 5, 0] \in \tilde{S}_5 \), \(w^+ = [-1, -2, 0, 3, 4, 5] \) and \(w = [-1, 3, 6, 4, 5, 2] \).
 - Determine which \(w \) is 321-avoiding.
 - (Use algorithm 1-avoiding).

- Determine which \(w \) satisfies \(w^+ w^- \) still 321-avoiding.
 - (Depends on the structure of \(w^+ w^- \); partition into long and short elements.)

Data

\[
\begin{align*}
\ell(q) & = 1 + 3q + 6q^2 + 6q^3 + 6q^4 + \cdots \\
\ell(q) & = 1 + 4q + 10q^2 + 18q^3 + 16q^4 + \cdots \\
\ell(q) & = 1 + 5q + 15q^2 + 30q^3 + 45q^4 + 50q^5 + 50q^6 + \cdots \\
\ell(q) & = 1 + 6q + 21q^2 + 50q^3 + 90q^4 + 126q^5 + 146q^6 + \cdots \\
150q^2 & + 156q^3 + 156q^4 + 156q^5 + 150q^6 + 158q^7 + \cdots \\
150q^2 & + 156q^3 + 156q^4 + 156q^5 + 150q^6 + 158q^7 + \cdots \\
\ell(q) & = 1 + 7q + 28q^2 + 77q^3 + 266q^4 + 364q^5 + 427q^6 + 462q^7 + 483q^8 + 490q^9 + 490q^10 + 480q^11 + 480q^12 + \cdots
\end{align*}
\]

Notice:
- The coefficients eventually repeat.
- For prime \(n \), the period is 1.

Combinatorial Models for \(S_n / S_2 \)

- (James and Kerber, 1981) Interpret \(w^+ \in S_n \) as \(\ell(n) \) runiners.
 - Place integers in \(n \) runiners.
 - \(\text{Circled entries: beads} \)
 - \(\text{Empty entries: gaps} \)
 - Bijection: Create an abacus where each runner has a lowest bead at \(w^- \).
 - Example. \([-4, -3, 7, 10]\).

Abacus diagrams

We use a normalized abacus diagram: shifts all beads so that the first gap is in position \(n + 1 \); this map is invertible.

Theorem. (H-J ’09) Given a normalized abacus for \(w \in S_n / S_2 \), where the last bead occurs in position \(i \), \(w^+ \) is lowest beads in runners only occur in fully commutative \(\{1, \ldots, n\} \cup \{n+1, \ldots, n+i\} \).

Ideas:
- Lowest beads in runners correspond to entries in base window.
- with only low and high entries
 - with low and high entries
 - with medium entries as well

Short elements versus long elements

Partition \(S_n \) into long and short elements:

- Short elements
 - Lowest bead in position \(i \leq 2n \)
 - Hard to count
- Long elements
 - Lowest bead in position \(i > 2n \)
 - Come in infinite families
 - Easy to count
 - Explain the periodicity

References