
Notes on the average size of an s, t-core partition

Drew Armstrong (armstrong@math.miami.edu) Christopher Hanusa (chanusa@qc.cuny.edu)

1. CH, 27 July 2011

The formula I found for the average number of boxes in a (3, 3m + 1) core partition is
(5m+ 3m2)/4; does this agree with your formula Drew?

Here is method I used to find this formula: [I realize that some of my conventions for
labels are non-standard; sorry.]

• I determined which alcoves are active for m. (See Figure 1.) If α1 = {
√

3/2,−1/2}
and α2 = {0, 1}, then the root lattice coordinates (f(x, y) = yα1 + xα2) for which
there is an active alcove satisfy the three inequalities

x+ y ≤ m+ 1,−x+ 2y ≥ −m, and 2x− y ≥ −m.

The attached alcove is the one that is closest to the center of the fundamental alcove.

Figure 1. Active alcoves

• I then determined the number of parallel hyperplanes (#hyp) that separate the al-
cove from the fundamental alcove, repeating for each family of parallel hyperplanes
(H0,H1,H2). Using the same convention (yα1 + xα2), there is a simple formula for
this number. (See Figure 2.)

– For H0: f [#].(α1 + α2) ≤ 0, then #hyp = x+ y, otherwise #hyp = x+ y − 1.
– For H1: f [#].(α1) ≤ 0, then #hyp = −x+ 2y, otherwise #hyp = −x+ 2y − 1.
– For H2: f [#].(α2) ≤ 0, then #hyp = 2x− y, otherwise #hyp = 2x− y − 1.

• Collecting the #hyp statistics from all three families of parallel hyperplanes gave the
biggest surprise. (See Figure 3.)

It appears that for i from 0 to m, there are a constant number of alcoves with
statistic #hyp = i, with this constant number equal to 4m+ 3. For i from m+ 1 to
2m, the number of alcoves with statistic #hyp = i exactly equals 2m + 1 − i. I am
optimistic that we could figure out how to generalize this.
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Figure 2. Number of hyperplanes separating active alcoves from fundamental alcove
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Figure 3. Table of #hyp statistics

• Now we can calculate the average size of a (3, 3m+ 1) simultaneous core partition:
(1)(

(4m+ 3)
m∑
i=1

(
i+ 1

2

)
+

2m∑
i=m+1

[
(2m+ 1− i)

(
i+ 1

2

)])/(
2 + 5m+ 3m2

2

)
=

5m+ 3m2

4

This is different from the method I used in Reykjavik, in which I determined a pattern for
the number of alcoves in each diagonal, and used it to find a formula which included many
floor functions. In both of my methods, I have not proved the formula for the number of
alcoves separated by #hyp from the fundamental alcove. This will need to be justified.

2. DA, 12 August 2011

Your formula does indeed agree with my conjecture that the average size of an (n, p)-core
is (n+p+1)(n−1)(p−1)/24. I like your method and I am optimistic that it can be extended
to the general case.

Suppose p = qn+ r, where q and r are the quotient and remainder. Say that the positive
root ei − ej with i < j has “height” j − i. Let Hij,k denote the hyperplane defined by
(·, ei−ej) = k. Then we define the simplex Dp(n) which is bounded by the set of hyperplanes

{Hij,q+1 : j − i = n− r} ∪ {Hij,−q : j − i = r}.

For example, 2 = 0 · 5 + 2, so the simplex D2(5) is bounded by the hyperplanes

H14,1, H25,1, H13,0, H24,0, H35,0.
2



It is not too difficult (but tricky — as all this affine stuff is) to show that Dp(n) contains
pn−1 alcoves, and contains 1

n+p

(
n+p
n,p

)
elements of the root lattice, which are in bijection with

(n, p)-cores. We can associate to each root vector the alcove touching it which is closest to
the fundamental alcove. Call these the “root alcoves”.

Now here’s a conjecture based on your email: For each i ≥ 0, let f(n, p, i) be the sum,
over positive roots α, of the number of root alcoves in Dp(n) that are separated from the
fundamental alcove by i hyperplanes perpendicular to α. Then the total number of boxes in
the set of (n, p)-cores is the sum over i of f(n, p, i)

(
i+2
2

)
.

Based on your email, it is very possible that f(n, p, i) has a formula simple enough such
that the above sum simplifies to the desired formula.

If the general formula f(n, p, i) is as simple as the p = mn+ 1 case, then we can probably
guess it from a small amount of experimental data. I don’t yet have an idea to prove such a
formula.

3. DA, 12 August 2011, Part II

Here’s an interpretation of f(n,mn+ 1, 0), which I can prove.
Consider the lattice paths from (0, 0) to (n,mn) staying weakly above the diagonal. Say

that a box above the path is in column i if it is between vertical lines y = i − 1 and y = i.
Then f(n,mn + 1, 0) is the sum over paths of number of boxes below the path (but above
the diagonal) in columns with coordinate divisible by m.

I do not know a closed formula, but presumably this interpretation will help to find one.

Let lattice paths from (0, 0) to (n,mn) staying weakly above the diagonal be called m-
Fuß-Catalan paths. We will consider boxes below the paths and above the diagonal. Then
for 1 ≤ i ≤ m− 1 we have

f(n,mn+ 1, i) =
∑[

(# boxes below path in columns of residue i mod m)−

(# boxes below path in columns of residue i− 1 mod m)
]
,

where the sum is over m-Fuß-Catalan paths.

4. CH, 15 August 2011

I had a few questions about what you wrote, especially about the f(n, p, i) numbers. You
define them first in terms of root alcoves, and then in terms of lattice paths. You mention
that you can prove the interpretation of f(n,mn + 1, 0), and then you sent a formula for
f(n,mn+ 1, i) with a similar interpretation.

(1) Does this mean that you have proved the correspondence between the root alcove
interpretation and the lattice path interpretation for f(n,mn+ 1, i)?

(2) Is the bijection easy to see?

If I am understanding you correctly, you are implying that this bijection is another way to
get a handle on the quantity f(n,mn+ 1, i), but that even with this alternate combinatorial
interpretation, you are unsure of how to use these interpretations to find a formula for
f(n,mn+ 1, i).

(3) Is this a fair statement?
3



(4) Would you say that a goal for this project would be to find a formula for
f(n,mn+ 1, i)?

(5) How are these numbers f(n,mn+1, i) related to the (q, t)-Fuß-Catalan numbers that
I have seen in your work and in the work of Christian Stump?

Here are more general questions:

(6) Why are the elements of the root lattice in Dp(n) in bijection with (n, p)-cores? I
am under the impression that it has something to do with left versus right action of
generators, but I am unclear on why these (n, p)-cores should necessarily be contained
in Dp(n). Is there some reference to read about this?

(7) Where does this simplex Dp(n) come from?

5. DA, 15 August 2011

It’ll take me a few days to get back to you in detail, but the answer to most of your
questions is yes. I think I can prove the lattice path interpretation of f(n,mn+ 1, i), up to
i = m− 1 (it might need to be tweaked, but something like it should be true). Beyond that
I don’t know how to think about it yet. I don’t know a closed formula for this, but I am
guessing that f(n,mn + 1, i) is constant in this range, and then decreases in some simple
way for larger i.

Yes, it seems that the goal of the project is to guess and prove a formula for f(n, p, i), and
then use this to analyze the distribution of (n, p)-cores, in particular to prove the conjecture
on the average size.

I think this is the standard bijection from the root lattice to n-cores: Given a root vector
(r1, . . . , rn), fill in the n-abacus with the highest bead on the i-th runner at level ri. The
resulting abacus determines the beta set of an n-core. To say that this n-core is also a
p-core (for p coprime to n) means that if you substract p from any bead label, the resulting
labeled position must also contain a bead. This condition can be alternatively stated as a
set of linear inequalities on the coordinates of the root; exactly those that define the simplex
Dp(n).

6. CH, 13 September 2011

With help from your responses to previous emails, I am now feeling more comfortable
with the structure of Dp(n). After doing some programming in Mathematica, I also feel
more comfortable with the lattice paths, and Mathematica will now generate for me many
pictures and data related to lattice paths (see attached). I would appreciate it if you could
write down the bijection you state for f(n,mn+ 1, 0) between root alcoves and lattice paths
(or send me an appropriate reference). I am especially surprised that these multidimensional
alcove pictures condense down to a two-dimensional lattice path interpretation (!).

My initial (naive) investigations into the bijection and into your lattice path definition of
f(n,mn+ 1, i) makes me wonder if your formula should be

f(n,mn+ 1, i) =
∑[

(# boxes below path in columns of residue (i+ 1) mod m)−

(# boxes below path in columns of residue i mod m)
]
,

4



instead of

f(n,mn+ 1, i) =
∑[

(# boxes below path in columns of residue i mod m)−

(# boxes below path in columns of residue i− 1 mod m)
]
,

Alternatively, it may be the case that residues are shifted by 1 (and that residues should
start in the first column with zero), or perhaps that I am completely misunderstanding the
situation. The reason for my concern is that it appears that the sum (boxes of residue
1)−(boxes of residue 0) is negative in the current terminology. In addition, when I run the
numbers, it does not seem to work out quite right. For example, from the attached figures
we should be able to calculate f(3, 7, 1) and f(3, 10, 1). The number of boxes in each residue
class is calculated to the right of each picture (please verify that I have your notion of residue
correct). From this, when we sum over residue classes in all paths we have (class 1: 12, class
2: 21) when m = 2, and (class 1: 18, class 2: 30, class 3: 42) when m = 3. As you can see
when m = 3, the differences between residue classes are indeed constant (this holds true for
m = 4 through m = 10 as well), however the numbers are not quite right. I think that the
definition can not be too far off, but something is not right.

7. DA, 13 September 2011

Here I’m using a bijection which I think appears in Fishel and Vazirani’s paper, but I’m
not sure. I’ll describe it. Think of a square grid and for 1 ≤ i < j ≤ n label the box with
top-right corner (i, j) with the root ei−ej. Given a dominant region of the Shi arrangement,
the hyperplanes ei − ej = 1 below the region correspond to the boxes above a Dyck path
from (0, 0) to (n, n), and this is a bijection. (This is well known). Now consider the m-Shi
arrangement with hyperplanes Hei−ej ,k for −m+ 1 ≤ k ≤ m. Let R be a dominant region in
this arrangement. Then for each 1 ≤ k ≤ m we get a Dyck path (0, 0) to (n, n) corresponding
to the hyperplanes Hei−ej ,k below R. Add these Dyck paths (that is, add the shapes above
them row by row) to get a path from (0, 0) to (mn, n) staying above the diagonal. Claim
(and this — I think Brant told me — is in some paper by Fishel and Vazirani): This is a
bijection from dominant m-Shi regions to Fuss-Catalan paths (0, 0) to (mn, n).

I think the proof involves placing the hyperplanes Hei−ej ,k in the boxes with column residue
k. Then one can translate information about separating (resp. nonseparating) hyperplanes
with a given height into information about boxes above (resp. below) the lattice path with
a given column residue. This is the idea I used — and as you mention I may have got the
conventions slightly off.

8. CH, 21 September 2011

Here is an update of a number of different ideas I’ve thought about in the past week.

8.1. Lattice Path Interpretation. I have come to believe that the Fuss-Catalan path
interpretation is not the right approach to this problem.

One reason is because of the problems with the idea of residues that we would want to
be true. This goes back to your method of constructing the m-Dyck paths by combining m
independent Dyck paths. Consider the case in A2 with m = 3, shown in Figures 4 and 5. In
Figure 4, you can see the gluing of the three independent Dyck paths (one blue, one green,
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Figure 4. The 22 lattice paths from (0, 0) to (9, 3), with their corresponding
partitions λ = (λ1, λ2, λ3) satisfying λ1 ≤ 6, λ2 ≤ 3, and λ3 ≤ 0. The coloring
of the boxes corresponds to the bijection with Figure 5.
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perplanes Hα,1 (in blue), Hα,2 (in green), and Hα,3 (in orange). Adding the
numbers of all colors in column 1 gives the first number in the pair below, and
adding the numbers in column 2 gives the second number in the pair below.
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Figure 4.
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one orange), which corresponds to the positions of each alcove in Figure 5 with respect to
the hyperplanes Hα,k for k = 1 (blue), k = 2 (green), and k = 3 (orange).

The residues that should be placed in the boxes above the lattice path must be {0, 1, 2},
depending on the hyperplane traversed, {θ, α1, α2} respectively. We notice that a 0 corre-
sponds to the first occurrence of a colored box in the first row, a 1 corresponds to the first
occurrence of a colored box in the second row, and a 2 corresponds to the second occurrence
of a colored box in the first row. In this way, it is possible to read off the number of hyper-
planes of each type∗ that separate the alcove from the fundamental alcove, as long as we
know the coloring scheme for the boxes above the lattice path.

However, even this is not clear cut because it is unclear how to resolve an m-Dyck path
into m independent Dyck paths. There must be a rule that determines these m paths (as
we do have a bijection), but this rule seems complicated. For example, consider the lattice
path corresponding to partitions (3, 2, 0) and (4, 2, 0). Except for these two cases, we might
conjecture that we use as many colors as there are boxes in the second row of the partition.
This rule does not work in these two cases because it is impossible to have only blue and green
boxes—if the alcove is separated from the fundamental alcove by hyperplanes Hθ,1, Hα1,1,
Hα2,1 and Hθ,2, then it must be the case that the alcove is separated from the fundamental
alcove by Hθ,3 as well.

The more compelling reason why I am not happy with the lattice path method has to do
with the (∗) above, because it is not the case that we are keeping track of all hyperplanes
separating particular alcoves from the fundamental alcove. For instance, consider the alcove
corresponding to partition (6, 3, 0). This alcove is separated from the fundamental alcove
by Hα1,1, Hα1,2, and Hα1,3 as well as Hα2,1, Hα2,2, and Hα2,3, and by Hθ,1, Hθ,2, and Hθ,3.
In addition, it is separated by Hθ,4, Hθ,5, and Hθ,6, which are not taken into account by
the Dyck path interpretation (or I do not see how). We can see that this will lead to an
overcount for f(3, 3m+ 1, i) for i ≤ m and an undercount of f(3, 3m+ 1, i) for i > m.

This leads into the discussion of the next topic, which I hope will serve as a general
framework for solving this problem.

8.2. Pyramids. Fishel, Tzanaki, and Vazirani’s [FTV09] discusses coordinate systems for
alcoves and regions of the m-Shi hyperplane arrangement. The coordinates of an m-minimal
alcove in the m-Shi arrangement can be represented by a table of numbers, {kij}1≤i≤j≤n−1,
where kij tells us how many hyperplanes perpendicular to αij = εi−εj+1 separate the alcove
from the fundamental alcove. See Figure 6 for the coordinates of every 4-minimal alcove in
the 4-Shi arrangement.

Fishel et al. also use and define the coordinates of a region in the m-Shi arrangement by
setting eij = min(kij,m). In fact, these are the coordinates that would be found by adding
the colored arrays of numbers in Figure 5. Fishel et al. use the terminology Shi tableau
to reference the staircase partition of the Shi coordinates of an alcove; I prefer the name
pyramid, which comes from Richards’s [Ric96].

What these Shi coordinates do is give us a new method to calculate f(n,mn+ 1, i), which
will be exactly the number of occurrences of i in {k11, k22, . . . , kn−1,n−1, k1,n−1}. Analyzing
the structure of m-minimal alcoves in the 3-Shi arrangement now does prove that the average
size of a (3, 3m+ 1) simultaneous core partition is (5m+ 3m2)/4.

Proposition 8.1. The average size of a (3, 3m + 1) simultaneous core partition is (5m +
3m2)/4.
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Figure 6. The 4-Shi arrangement in A2 along with pyramid coordinates of
every 4-minimal alcove.

Figure 7. Alcoves in the 1-Shi and 2-Shi arrangements in A3

Proof. When n = 3, we note that the Shi coordinates for m-minimal alcoves

[
k12 k11

k22

]
are

either of the form

[
i+ j i
j

]
for 0 ≤ i, j ≤ m or

[
i+ j + 1 i

j

]
for 0 ≤ i, j ≤ m − 1 and

i+ j ≤ m− 1.
We first determine the number of occurrences of k for 0 ≤ k ≤ m. The value k can occur

as a value for i or j in the former case (in 2(m+ 1) ways) or as a value for i or j in the latter
case (in 2(m− k) ways). k can also occur as an i+ j or i+ j + 1 in 2k + 1 ways, for a total
of 4m + 3 ways. When k ≥ m + 1, there are 2m + 1 − k ways k can appear. We conclude
that Equation 1 holds. �

In order to answer this question for other simultaneous core partitions, we will need to
understand the structure of the m-minimal alcoves and their Shi coordinates. The charac-
terization of valid Shi tableaux has already been done, but it seems less than obvious about
how to use the characterization to count occurrences. As I mentioned in an email yesterday, I
worked to implement alcoves in A3 in Mathematica; results are in Figure 7. It was surprising
to me how many alcoves are separated from the fundamental alcove by Hθ,1 and not by Hθ,2.
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8.3. Questions.

Question 8.1. You mention that the bijection between (boxes above a Dyck path) and (hy-
perplanes below a dominant region) is well known. Do you have a reference or two available?

Question 8.2. Perhaps Monica knows about the generalization to Fuss-Catalan paths and
see if she has any ideas about an interpretation of the boxes above the paths.

Question 8.3. Do you have any thoughts on approaching higher-dimensional arrangements?

9. CH, 27 September 2011

After asking Question 8.2 to Monica, she forwarded the message onto Susanna Fishel
(susannadf@gmail.com), who replied with the following information.

“Pak/Postnikov/Stanley’s bijection from regions to parking function, when
restricted to dominant regions, shows that the number of boxes in the partition
fitting in a staircase (=lattice path) is the number of hyperplanes separating
the region from the origin. I think the partitions in ((n−1)m, (n−2)m, ....,m)
with part i = (n − i)m correspond to regions with Hαi

as separating wall. I
think.”

9.1. Direct counting of alcoves in A3. Here is a guess about generalizing the counting
method from A2 to A3. I am imagining that the set of m-minimal alcoves will look like a
“solid” m + 1-dilation of the fundamental alcove A0 with a “holey” m + 1-dilation of the
fundamental alcove reflected about the hyperplane Hθ,m+1. In A2, we see this structure in
Figure 6, where all alcoves within the 5-dilation of A0 are 4-minimal alcoves and only certain
alcoves in the reflected 5-dilation of A0 are m-minimal alcoves. Given a characterization
of the m-minimal alcoves for higher dimensions (and a proof that the characterization is
correct) will provide a way to verify the average simultaneous core formula for (n,mn+ 1).

Question 9.1. Is anything known about a nice alcove interpretation of (n, t)-core partitions
when t 6= mn+ 1?

9.2. Abaci and lattice paths in the work of Anderson. When reading through Fishel et
al.’s discussion of Shi tableaux, I read backward and saw that these Shi tableaux characterize
the relative levels of the lowest beads in the abaci, which means that there should be a way to
investigate these simultaneous core partitions using abacus diagrams instead of Shi tableaux.
Figure 8 shows the abacus diagram that corresponds to alcoves in type A2. The normalized
abacus diagram is given, where the runners are rotated so that the first gap occurs in position
0.

Going back to the work of Anderson [And02], we see that there is another a lattice path
interpretation for partitions that are n and mn+1 cores (in fact, for s and t cores in general).

Definition. Given relatively prime integers s and t, we will place certain integers on a
rectangular lattice of dimensions (0, s) × (0, t). We place integer st − xs − yt in position
(x, y). Note that the integers below the line l : y = − s

t
x+s are positive. There is a bijection

between lattice paths from (0, s) to (t, 0) staying below the line l and abacus diagrams
representing simultaneous (s, t) core partitions. Given such a lattice path, read off the right-
most number in each row; this number is the position of the highest gap on a runner of the
abacus. An example is given in Figure 9.
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Figure 8. The abacus diagrams corresponding to the alcoves in type A2.
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Figure 9. A lattice path from (0, 3) to (7, 0) staying below 3− 3
7
x, along with

the the corresponding abacus diagram for a simultaneous (3, 7)-core partition.

Importance: From Anderson’s characterization, we know the set of abaci that correspond
to simultaneous core partitions. If we can convert the knowledge of the set of valid abaci to
statistics on separating hyperplanes in alcoves (for the general case of s and t cores), and
this will determine a formula for the size of an average core! Alternatively, we would be able
to read off the size of the cores by counting bead-gap pairs in the abaci.

What is surprising is that Anderson’s lattice path interpretation is different from the
aforementioned lattice paths from (0, 0) to (mn, n). Any path from (0, n) to (mn + 1, 0) is
also a path from (0, n) to (mn, 0), so we might imagine that there is a simple bijection, but
I have not yet found it.

Question 9.2. Is there a bijection between Anderson’s lattice path interpretation and the
other lattice path interpretation when dealing with simultaneous n and nm+ 1 cores?

10. DA, 27 September 2011

10.1. Answers to Chris’s Questions.
Answer to Question 8.1. In my thesis I attributed this to Cellini and Papi, “ad-nilpotent

ideals of a Borel subalgebra II”. I am sure this was known to Shi in the 1980s but I don’t
10



have an exact reference. (Shi wrote so many papers with similar content that I have a hard
time pinpointing his results.)

Answer to Question 9.1. Yes. Susanna and Monica wrote a paper proving that the
(n, nm−1)-cores correspond to the maximal alcoves in the bounded chambers of the m-Shi
arrangement. (Citation: [FV09])

Answer to Question 9.2.
I guess that the bijection described in Section 2.5 of Nick Loehr’s thesis will work.

http://www.combinatorics.org/Volume 12/PDF/v12i1r9.pdf

My guess is based on the following: I believe that Nick’s bijection is a generalization of the
zeta map that exchanges (area,dinv) with (bounce,area) for m = 1. This is Theorem 3.15
(page 50) in Jim’s book. http://www.math.upenn.edu/∼jhaglund/books/qtcat.pdf

And the zeta map is the m = 1 version of the bijection you want. (I can prove this, but I
don’t think it’s written down anywhere.)

10.2. Bouncy bijections. I’ll tell you how I understand the (area,dinv)↔(bounce,area)
bijection without going through the alcove picture.

Start with a lattice path and label the boxes to the right of the up-steps as follows: Put 1
in the bottom left box, then put 2 in the next box you see along a slope 1 diagonal. Continue
along the same diagonal to place 3, etc until you run out of boxes. Then continue with the
next higher slope 1 diagonal, etc. This is called the diagonal filling.

Now, to each vertical domino of boxes filled with i < j we associate the root ei− ej. This
defines a bijection to antichains in the root poset. Go from an antichain to a new lattice
path by indexing a box by (a, b) if its top-right corner is (a, b). Then the shape above the
desired lattice path corresponds to the boxes in the filter generated by the antichain. The
antichain elements are the boxes sitting in the valleys of the path.

So essentially the pairs of two consecutive up-steps in the original path go to the valleys
of the new path. I find this much easier to compute than the definition in Jim’s book.

11. CH, 10 October 2011

11.1. Recent Thoughts.
I learned about the set of co-filtered chain of ideals that are in bijection with the alcoves.

As the alcove coordinates can be directly read from such a chain, it is expected that these
chains have as difficult a structure as the alcove coordinate descriptions. I imagine that
there is some action of the generators of W on these chains; perhaps that has been discussed
somewhere in the literature.

I have perused the literature related to the (area,dinv) ↔ (bounce,area) correspondence,
including the rule for finding “bounce” in m-Dyck paths (some references suggested by
Drew, thanks). The construction is quite complicated. Drew mentions that this should be
the rule that creates the bijection with Anderson’s lattice path, but I am not seeing the
correspondence at all; I do not currently see any reason why they should be the same. I plan
to work some examples.

It is clear that (n,mn+ 1)-core partitions have a Fuss-Catalan lattice path interpretation,
but it is unclear that (n, p)-core partitions have a Fuss-Catalan lattice path interpretation.
However, Anderson’s lattice path interpretation does work for (n, p). In addition, looking at
Anderson’s lattice paths, it is natural that (n,mn + 1) and (n,mn − 1) are nice cases, and

11



other cases are not as nice because the order of the residues on the levels of the lattice paths
are irregular.

I like your diagonal filling method to compute the corresponding antichain. If I work with
it further, I suppose I will come to understand how to derive it from its other definition.

11.2. Generating more data.
Using Anderson’s lattice path definition, I was able to generate some more data toward

Drew’s conjecture! There is some good news, but mostly some bad news. The bad news is
that Drew’s conjecture does not work for n > 3. The good news is that with more data we
could possibly understand how to prove a formula in general. In addition, it appears that
Drew’s conjecture holds for n = 3 and all p ≡ 1, 2 mod 3; it remains to prove for p ≡ 2
mod 3 since p ≡ 1 mod 3 was proved in Proposition 8.1.

I am able to generate data for all relatively prime pairs of numbers (n, p). And in fact,
there appears to be plenty of similarities between the data for different residues mod n, but
the data for 1 modulo n is the nicest. Here is the data for n = 4 and n = 5:

p 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
5 29 21 5 1
9 80 60 52 14 10 3 1
13 157 125 105 97 27 23 16 6 3 1
17 260 216 184 164 156 44 40 33 23 10 6 3 1
21 389 333 289 257 237 229 65 61 54 44 31 15 10 6 3 1
25 544 476 420 376 344 324 316 90 86 79 69 56 40 21 15 10 6 3 1
29 725 645 577 521 477 445 425 417 119 115 108 98 85 69 50 28 21 15 10 6 3 1

Figure 10. Table of values for (4, p)-simultaneous core partitions.

p 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
6 121 63 18 7 1
11 577 349 247 72 66 33 16 4 1
16 1609 1109 783 631 180 185 157 90 57 29 10 4 1
21 3453 2579 1927 1497 1289 360 382 365 303 190 136 87 47 20 10 4 1
26 6345 4995 3915 3105 2565 2295 630 675 675 624 516 345 265 190 124 71 35 20 10 4 1

Figure 11. Table of values for (5, p)-simultaneous core partitions.

We can see some patterns emerging. For example, notice that when n = 3, the number
of regions separated by k hyperplanes broke into two clearly delimited parts. In the case for
n = 4, there are three parts, and when n = 5, there are four parts. Also, we see that the last
part consists of triangular (tetrahedral) numbers for n = 4 (n = 5). When n = 4, both the
red and green parts have entries that are predictable; the differences between consecutive
terms are . . . , 80, 68, 56, 44, 32, 20, 8 and 4, 7, 10, 13, 16, 19, . . ., which implies that the entries
in both the red and the green parts satisfy a quadratic equation. For n = 5, the entries in
the red parts satisfy a quadratic equation, while the other parts satisfy cubic equations.

We can conjecture a formula for ac(4, 4m+ 1):
12



Conjecture 11.1. The average size of a (4, 4m+ 1) simultaneous core partition is

ac(4, 4m+ 1) =

 ∑m
k=1

(
4 + 12m+ 13m2 + 6k2 − 2k(1 + 6m)

)(
k+1
2

)
+∑2m

k=m+1

(
1
2
(2 + k − 3k2 + 5m+ 6km+m2)

)(
k+1
2

)
+∑3m

k=2m+1

(
3m+2−k

2

)(
k+1
2

)


(
4m+5

4

)/
(4m+ 5)

=
1

12
m(4m+ 5)(20 + 106m+ 193m2 + 146m3 + 39m4)

/(
4m+ 5

4

)
=
m(20 + 86m+ 107m2 + 39m3)

4(1 + 2m)(3 + 4m)
(2)

A conjecture for ac(4, 4m+ 3) should look similar, but it is not equal, so it is not the case
that for n = 4 (and probably higher values of n), ac(n, p) is a function of n and p. It feels
that this data implies that the method of proof will not be uniform for all n; if there is a
“nice” formula, it will likely involve some sort of reference to the structure of lattice paths or
some other combinatorial interpretation. Perhaps the best we could hope for is a nice result
for (3, p) cores, and in a stretch both (n,mn + 1) and (n,mn − 1) cores? Actually I think
that (n,mn+ 1)-cores and (n, p)-cores are of the same difficulty (quite hard), so if a formula
is found for ac(n,mn+ 1), then a formula for ac(n, p) should be available with a little more
nudging.

12. DA, 10 October 2011

I’m skeptical. I had quite a bit of data to support the original conjecture. Data with a and
b into the teens. The same conjecture also holds when we restrict to self-conjugate (a, b)-
cores. Here’s a maple worksheet to compute the average size of an (a, b)-core. It currently
displays the example (a, b) = (6, 7), which works. It needs Stembridge’s posets package.
The algorithm is based on Anderson’s bijection. Betas refers to the set of first-column
hook-lengths. Alphas refers to the usual notation for an integer partition.

13. CH, 11 October 2011

Thankfully Drew is around to enlighten me to see the errors of my ways. I had made an
incorrect assumption, that to calculate the number of boxes in the core partition, I would
only need to tally the hii and h1n terms from the Shi coordinates; what I really needed to
tally was the values of all entries of the Shi coordinates. I modified my Mathematica code
to do this and generate new tables similar to those above. (See Figures 12 and 13.)

We notice that values still break down into (colored) parts, each of which satisfies a
polynomial of order n− 2.

It is important to note that I am only giving the values for simultaneous (4, 4m+ 1) and
(5, 5m+ 1) cores, which are nice families of cores and we can see that the first (red) part of
the data is constant. This is not the case in general, such as in the case of (5, 5m + 2) core
partitions. This makes me reconsider my claim that (n, p) in general will be of the same
order of difficulty as (n,mn+ 1) and (n,mn− 1).

We can update Conjecture 11.1, which (now) agrees with Drew’s formula of 1
24

(n + p +
1)(n− 1)(p− 1):
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p 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
5 37 37 9 1
9 94 94 94 28 16 3 1
13 177 177 177 177 57 41 24 6 3 1
17 286 286 286 286 286 96 76 55 33 10 6 3 1
21 421 421 421 421 421 421 145 121 96 70 43 15 10 6 3 1
25 582 582 582 582 582 582 582 204 176 147 117 86 54 21 15 10 6 3 1
29 769 769 769 769 769 769 769 769 273 241 208 174 139 103 66 28 21 15 10 6 3 1

Figure 12. Corrected table of values for (4, p)-simultaneous core partitions.

p 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
6 176 176 56 11 1
11 733 733 733 278 173 53 22 4 1
16 1917 1917 1917 1917 777 587 377 146 83 37 10 4 1
21 3964 3964 3964 3964 3964 1664 1364 1039 688 310 204 119 57 20 10 4 1
26 7110 7110 7110 7110 7110 7110 3050 2615 2150 1654 1126 565 405 270 162 83 35 20 10 4 1

Figure 13. Corrected table of values for (5, p)-simultaneous core partitions.

Conjecture 13.1. The average size of a (4, 4m+ 1) simultaneous core partition is

ac(4, 4m+ 1) =

 (6 + 18m+ 13m2)
∑m

k=1

(
k+1
2

)
+∑2m

k=m+1

(
1
2
(6− k2 + 21m+ 17m2 − k(5 + 6m))

)(
k+1
2

)
+∑3m

k=2m+1

(
3m+2−k

2

)(
k+1
2

)


(
4m+5

4

)/
(4m+ 5)

=
1

3
m(1 +m)(1 + 2m)(3 + 2m)(3 + 4m)(4m+ 5)

/(
4m+ 5

4

)
= m(3 + 2m)(3)

Drew also mentions self-conjugate simultaneous cores. One would hope that there would
be some conceptual reason why the average size of the self-conjugate simultaneous core gives
the same formula for the average size of all the simultaneous cores.

Question 13.1. What is the conceptual reason behind the equivalence of ac(n, p) and asc(n, p)?
Would an involution argument work? This may bring the focus “squarely” on the self-
conjugate simultaneous cores.

Question 13.2. From work of Fayers [Fay11], we know that every simultaneous core par-
tition is a subdiagram of the simultaneous core partition of maximal size. Is there a way
to use this fact? I think there are some complications in that multiple copies of the same
subdiagram may exist within the same maximal core.
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14. CH, 12 October 2011

We should be able to prove Conjecture 13.1 by using the same method as that to prove
Proposition 8.1.

Idea for how to prove Conjecture 13.1. The six possible sets of pyramid coordinates for min-
imal alcoves in the m-Shi arrangement for A3 are: (cases 0 through 5)i+ j + k i+ j i

j + k j
k

,

i+ j + k + 1 i+ j i
j + k j
k

,

i+ j + k + 1 i+ j + 1 i
j + k j
k


i+ j + k + 1 i+ j i

j + k + 1 j
k

,

i+ j + k + 1 i+ j + 1 i
j + k + 1 j

k

,

i+ j + k + 2 i+ j + 1 i
j + k + 1 j

k

.

The restrictions on the values that (i, j, k) can take on in each case are dictated by the fact
that we are not allowed to have two alcoves that are in the same region, that is, the region
coordinates must be distinct. The way to ensure this is through the following restrictions.

Case Set of restrictions on (i, j, k)
Case 0 no restrictions
Case 1 i+ j + k < m
Case 2 i+ j < m
Case 3 j + k < m
Case 4 i+ j < m and j + k < m
Case 5 i+ j < m and j + k < m and i+ j + k + 1 < m

We now can calculate the number of appearances of 0 up to 3m as coordinates in each case
using generating functions.

In case 0, the values that i + j + k can take on are the coefficients of the generating
function (1 +x+ · · ·+xm)3. The values that i+ j or j+ k can take on are the coefficients of
(m+ 1)(1 + x+ · · ·+ xm)2, where the m+ 1 arises because of the m choices for the variable
that is not involved. The generating function for the values that i or j or k can take on are
(m+ 1)2(1 + x+ · · ·+ xm). We therefore have the generating function

f0(x) = (1 + x+ · · ·+ xm)3 + 2(m+ 1)(1 + x+ · · ·+ xm)2 + 3(m+ 1)2(1 + x+ · · ·+ xm).

Then we run into some trouble. First, it is not pleasant to get a formula for [xk]f0, because
there is no simple form even for [xk]

(
(1 + x+ · · ·+ xm)3

)
, which is OEIS sequence A109439.

There was an interesting note in sequence number A027907; it implied that the coefficient
of [xk]

(
(1 + x + · · · + xm)n

)
equals the number of lattice paths from (0, 0) to (n, k) using

steps of size (1, 0), (1, 1), . . . , (1,m). This brings us another appearance of lattice paths from
(0, 0) to (n,mn).

There is another problem when we try to find a generating function approach for other
cases. It is no longer the case that the possible values for i + j + k is a product of three
generating functions; the relationship is more complicated; much more so than the two
variable case. There must be a better way to think about this since the numbers are so
nice. �
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I think it is clear that this is not feasible to do for all (n, p) simultaneous cores, and not
even for all (n, nm + 1) simultaneous cores. This also does not get at the reason why we
should expect the number of appearances of 0 through m to be constant.

I generated the data for self-conjugate simultaneous cores and the data looks even more
mysterious than the data for all simultaneous cores. I was hoping that it would be enlight-
ening...

Up until now I have been generating data by first finding the valid abaci that represent the
simultaneous cores, from which we can read off the coordinates of an alcove by calculating
the number of levels between lowest beads on the abacus. The coordinates give the number
of hyperplanes of type α that separate each alcove/region from the fundamental alcove, from
which we can calculate the number of boxes in the core partition by recognizing that being
separated by k hyperplanes corresponds to a total of

(
k+1
2

)
boxes being added.

Perhaps there is a direct way to collect data on the size of each core from the abacus
instead of passing through the alcoves? Of course there is—it has to do with the number
of bead-gap pairs. Given highest gaps (g0, g1, . . . , gn−1) (ordered in increasing order), we
can determine the number of boxes in the corresponding core partition by considering the
number of bead-gap pairs generated by runners ri and rj for all i < j. And if we do this we
find the exact same formula we did by passing through alcoves. Can we count another way?
Or is there a way to count them in aggregate without resorting to counting each individual
object?

15. CH, 14 October 2011

15.1. Thoughts related to Sections 13 and 14.
In order to prove a formula related to the data in the colored tables above, we will need

to investigate the appearance of values of k in the pyramid coordinates in all cases. In the
case that works to prove Proposition 8.1, the reason for the constancy is related to the way
the number of appearances of k increase gradually for terms of the type i+ j or i+ j + 1.

The i+j contribution is 0, 1, 1, 2, 2, 2, 3, 3, 3, . . ., where the number of occurrences of k ≤ m
is k+ 1; similarly the contribution from entries of the form i+ j + 1 is k. The contributions
from the i and j coordinates are also easy to describe. In coordinates of the first type, the i
and j each range independently from 0 ≤ i, j ≤ m, so the appearances of k are equinumerous.
In coordinates of the second type, i and j satisfy i+ j < m, so the number of occurrences of
k is 2(m− k). Since the increasing amounts of k for i + j and i + j + 1 entries is cancelled
out by the decreasing amounts of k for i and j entries, we have constancy.

Because of the data I generated, this appears to be a more general phenomenon; figuring
out exactly what the red data is in Figures 12 and 13 would require understanding which
sets add up to constants in this general case. That this is a more general phenomenon is
quite surprising actually and might merit study on its own.

In addition, Case 0 is the only case in which i + j + k can be larger than m(n − 1), and
therefore it makes sense that the black data are binomial coefficients.

But this is not what I wanted to think about today...
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Figure 14. The core partitions that correspond to alcoves and inverse alcoves

15.2. What Ish means in normalized abaci.
Instead, I want take the abaci in alcoves picture (Figure 8) and cores in alcoves picture

(Figure 14a) and turn them inside out to see what I could learn. (See Figures 15a and 14b,
respectively.) I have found something beautiful that I suspect that Drew has already seen
but perhaps it is something new to him as well. In any case, I have found a new way to
approach the problem, which may be able to be generalized, but I do not know exactly how.

The basic idea is that the Ish statistic for alcoves in the inverse diagram is exactly the
number of beads in the (normalized) abacus diagram, while the position of the lowest bead in
the (normalized) abacus is determined by a modified Shi statistic. Since the abacus has two
runners with beads, knowing these two pieces of information describes the abacus completely,
from which we can determine the Shi coordinates of the alcove and therefore the statistics
for how many i, j, and i + j. Since we know the coordinates of the alcoves in Dp(n), and
can determine a formula for the Ish statistic and the modified Shi statistic, then we can
determine the formula for the number of appearances of k as a coordinate.

And I’m sure there are better formulas, but here are formulas for Ish and Shi as a function
of a root lattice coordinate x in terms of the roots α1 = (

√
3/2,−1/2) and α2 = (0, 1) and
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Figure 15. The abaci corresponding to inverse alcoves have Ish number of beads.
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Figure 16. The lowest bead number for an abacus (left) corresponds to a
modified Shi number. Shi numbers are on the right.

the vectors that are perpendicular, h1 = (
√

3/6, 1/2), and h2 = (
√

3/3, 0):

Ish(x) =


6〈h1,x〉 − 2 when 〈α2,x〉 > 0 and 〈α1 + α2,x〉 > 0

−6〈h2,x〉 when 〈α1,x〉 ≤ 0 and 〈α1 + α2,x〉 ≤ 0

−6〈h1 − h2,x〉 − 1 when 〈α1,x〉 > 0 and 〈α2,x〉 ≤ 0

Shi(x) =



4〈α1 + α2,x〉 − 3 when 〈α1,x〉 > 0 and 〈α2,x〉 > 0

4〈α1,x〉 − 2 when 〈α1,x〉 > 0 and 〈α2,x〉 ≤ 0 and 〈α1 + α2,x〉 > 0

4〈α2,x〉 − 2 when 〈α2,x〉 > 0 and 〈α1,x〉 ≤ 0 and 〈α1 + α2,x〉 > 0

−4〈α2,x〉 − 1 when 〈α1,x〉 > 0 and 〈α1 + α2,x〉 ≤ 0

−4〈α1,x〉 − 1 when 〈α2,x〉 > 0 and 〈α1 + α2,x〉 ≤ 0

−4〈α1 + α2,x〉 when 〈α1,x〉 ≤ 0 and 〈α2,x〉 ≤ 0

I did not prove them; I inferred them from the data. The modified Shi number is calculated

by counting Shi possible bead positions in the abacus, or as a formula, S̃hi = bShi−1
3
c +

(Shi−(1 mod 2)) + 1. Now that I have these formulas written down, they do not seem

pleasant at all to work with and calculate S̃hi−Ish. Unfortunately, after all this, I think
this simply returns to the method of calculating the number of boxes from Section 1—
why use abaci to calculate the coordinates of alcoves to calculate the number of separating
hyperplanes when we could calculate the number of separating hyperplanes directly? I do
like the connection of the abacus diagram to Shi and Ish.

One note: We can see in Figure 14b what Monica mentioned in Iceland—that by reflecting
an alcove that is “distance k” from the hyperplane Hα,0 adds (or subtracts) exactly k boxes
to the corresponding core.

Last, a question for Drew. You wrote back in August:

It is not too difficult . . . to show thatDp(n) contains pn−1 alcoves, and contains
1

n+p

(
n+p
n,p

)
elements of the root lattice, which are in bijection with (n, p)-cores.

Can you share the bijection of (n, p)-cores with the elements of the root lattice in Dp(n)?
I thank you for all your help and your patience with me as I learn the material; I hope it

has not been too much of a bother.
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Figure 17. Colors correspond to equivalent alcove coordinates. (a) Colors
based on minimum bead. (b) Colors based on difference between beads. (c)
Colors based on maximum bead.

16. CH, 18 October 2011

Ignore my last question—you answered it in September. I need to sit down and actually
write out those relations as coming from the abaci.

16.1. Thoughts on numerology.
Drew anticipates that the size of the average simultaneous core is (n+p+1)(n−1)(p−1)/24.

This formula is highly related to other numbers that occur in simultaneous cores.

• (n2−1)(p2−1)/24 is the size of the largest simultaneous core. Notice that (n2−1)(p2−
1)/24 = (np+n+p+1)(n−1)(p−1)/24, which means that the average simultaneous
core is (n+ p+ 1)/(np+n+ p+ 1) =

(
1/(n+ 1) + 1/(p+ 1)− 1/(n+ 1)(p+ 1)

)
times

the size of the largest simultaneous core.
•
(
n+p
p

)
/(n+ p) is the number of simultaneous cores, so this means that the total num-

ber of boxes in all simultaneous cores needs to be (n+p+1)(n−1)(p−1)
24(n+p)

(
n+p
p

)
, which has

multiple equivalent forms, but none as symmetric. However, it can be massaged into
(n2−1)(p2−1)

24
1

(n+p)(n+p+2)

(
n+p+2
p+1

)
, which is a multiple of the size of the largest simulta-

neous core. (Careful that (n+ p)(n+ p+ 2) might not divide evenly into
(
n+p+2
p+1

)
.)

16.2. Thoughts on the previous section.

There is little need to discuss S̃hi(x) instead of simply Shi(x) because we end up taking⌈
S̃hi(x)/3

⌉
=
⌈
Shi(x)/2

⌉
. I created pictures to visualize the occurrences of values of k as

coordinates by looking at the inverse picture. (See Figure 17.) It was surprising for me to see
the symmetry involved, especially how the abaci corresponding to having a very low bead
are centered around three rays propagating from the center, instead of three lines through
the origin. Also remember that the max bead corresponds to Shi, so Figure 17(c) is the
same as Figure 16(b).

16.3. Thoughts on finding a function for red data.
I thought about trying to get a better formula for the red data. It still looks ugly but less

intimidating. For example, in Case 1 with alcove coordinates

i+ j + k + 1 i+ j i
j + k j
k

, we

can ask how many choices for (i, j, k) satisfy i+j+k = x, and this is simply a multichoose, so
19



it is
(
x+2

2

)
, with generating function 1/(1−x)3 (truncated). Because we have the coordinate

i+ j + k + 1 instead of i+ j + k, we end up shifting these by x.
Also, any set of coordinates for m− 1 are also a set of coordinates for m, so we might as

well focus on what is added for m.

17. CH, 21 October 2011

17.1. Beta numbers.
Here’s an approach that seems a bit more promising. I was thinking about trying to

determine the size of of the core partition directly from the abacus diagrams. While I
remembered the idea of counting bead-gap pairs, it took some rereading of other papers
to reprocess the idea of beta numbers. For myself, let me recall that when the abacus is
normalized (first gap at position 0), then if we write down the positive beads in decreasing
order as (β1, β2, . . . , βb), these are called the “beta numbers” (what a horrible name—perhaps
I will rename them the bead numbers). These bead numbers correspond to the hook lengths
of the boxes in the first column of the corresponding partition λ, and as such, we can write
down λ = (β1 − (b− 1), β2 − (b− 2), . . . , βb−1 − 1, βb − 0).

This means that the total number of boxes in λ =
∑

1≤i≤b βi−
(
b
2

)
. Since b is the number of

beads in the abacus, we now know that this equals Ish(λ). In simple cases, the calculation of∑
all abaci

( ∑
1≤i≤b

βi

)
should not be impossible to figure out by appealing to Anderson’s lattices.

For example, we can find that for (3, 3m+1)-simultaneous cores, we know that we are allowed
to have any normalized abacus of (0, 3i+ 1, 3j + 2) satisfying 0 ≤ i ≤ m and 0 ≤ j ≤ m+ i,
so the sum of all bead numbers is

m∑
i=0

m+i∑
j=0

[ i∑
I=0

(3I + 1) +

j∑
J=0

(3J + 2)

]
=
m

12
(1 +m)(1 + 3m)(10 + 11m).

Similarly, for (4, 4m+ 1)-simultaneous cores, the sum of all bead numbers is

m∑
i=0

m+i∑
j=0

m+j∑
k=0

[ i∑
I=0

(4I+1)+

j∑
J=0

(4J+2)+
k∑

K=0

(4K+3)

]
=

1

6
(1+m)

(
14m+91m2+164m3+88m4

)
.

If we know the distribution of Ish in Dp(n), then we could find
∑

a∈Dp(n)

(
Ish(a)

2

)
, and know

the total number of boxes of all cores inDp(n). For (3, 3m+1), it appears that the distribution
of Ish is

(
01, 12, 23, . . . ,mm+1, (m+ 1)m, (m+ 2)m, (m+ 3)m−1, . . . , (3m− 1)1, (3m)

)
, so that

the quantity we need to remove from the sum of all bead numbers is
m∑
i=0

(i+1)

(
i

2

)
+

m∑
i=1

(m−i+1)

[(
m+ 2i− 1

2

)
+

(
m+ 2i

2

)]
=
m

24
(1+m)(−10+19m+39m2),

giving us that the total number of boxes in all (3, 3m + 1) simultaneous cores is exactly
m(1 + m)(2 + 3m)(5 + 3m)/8, which is correct. It does not appear that the distribution of
Ish in (4, 4m+ 1) cores is as nice.

Question 17.1. Is there a generating function for
∑

a∈Dp(n)

Ish(a)? Or is something known

about its distribution, or better, the distribution of
(
Ish(a)

2

)
?
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Perhaps it is possible to work these two sums together in such a way that the answer
falls out nicely. Perhaps some way to break down the Ish statistic further and fit it into the
sums...

17.2. Other abacus observations.
Earlier in the day, I looked at balanced abaci instead of normalized abaci, and investigated

the pictures of the abaci placed on dominant alcoves and inverted alcoves. In the inverted
alcove picture, I saw the known bijection between levels of the lowest beads and the root
coordinates, that at coordinate (xα1 + yα2), the abacus is (−3y + 3, 3x+ 1, 3(−x+ y) + 2),
although I do not understand why the first coordinate has a negative sign, nor do I understand
the appearance of −x+ y. This made me realize that given the coordinates of the root, we
can easily find the lowest beads in each runner. I suppose I am just a few steps away from
understanding the appearance of Dp(n).

When I looked at the dominant alcoves, I saw that there was a different method of un-
derstanding the ways in which the beads change when you walk between alcoves. When
you walk to the right, it adds one to the highest bead. When you walk to the northeast, it
subtracts one from the lowest bead. Some steps are both to the right and to the northeast,
and those are the ones which interchange those two runners, accomplishing adding one and
subtracting one at the same time.

17.3. Investigating Subdiagrams.
I also wanted to investigate Fayers’s result (actually Vandehey’s) that every (n, p) simulta-

neous core is a subdiagram of the maximal (n, p) simultaneous core κ. What I investigated
is that there appears to be a bijection between the boxes in the Durfee square of κ and
simultaneous core partitions that satisfy certain hyperplane inequalities. By choosing any
box in the Durfee square, take all boxes in κ to the right and below, and this is another
simultaneous core partition. But there is no bijection between the cores that don’t satisfy
those hyperplane inequalities and other subdiagrams—there are some diagrams that appear
multiple times as south-east subdiagrams of κ and there are some diagrams that do not
appear as south-east subdiagrams of κ.

I realized that these south-east subdiagrams that have a box in the Durfee square of κ
correspond to removing gaps from the bottom of an abacus or removing beads from the top
of an abacus. What was happening was that the “nice” subdiagrams correspond to abacus
diagrams (a0, a1, a2) satisfying a0 ≤ a1 ≤ a2, and the “not nice” subdiagrams correspond to
when a1 > a2. In both of these cases, it is possible to count bead-gap pairs in an easy way.
This made me think that perhaps there would be an easy way to count bead-gap pairs when
there are more runners, conditioning on the exact permutation of the lengths of the runners.

18. DA, MV, 21–22 October 2011

18.1. Monica writes:

This might not be quite what you meant, but ish is related to the length
(or width) of cores. Let’s say width, so λ1. Chris Berg and I studied the
generating function of cores w.r.t. the stat of λ1 and it’s in [BV08]. It’s a
pretty simple function. How that fits in with just summing over Dp(n), I’m
not sure since I have to read the backlog for the notation.
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18.2. Drew writes:

Conjecturally, the distribution of ish on Dp(n) is equal to the distribution of
shi on Dp(n). (For shi to be defined we currently need to assume p = ±1
mod n.) And this distribution of shi is given by the rank numbers of the
poset of dominant (bounded or arbitrary) m-Shi regions, which in a sense we
know, but I don’t think there’s a closed formula. In the case m = 1 we are
looking at the poset of Dyck paths under inclusion of Ferrers shapes. Do the
rank numbers of this poset have a closed formula? (I don’t know.)

19. CH, 26 October 2011

19.1. Notes on ish.
I learned that ish is not equal to the number of beads in the abacus. Working from the

definition in [Arm09], I see that in fact, ish equals the number of gaps before the lowest bead
in the abacus. Since there is not a nice relationship in general (when p 6= mn + 1) between
the number of gaps before the lowest bead in the abacus and the the number of beads after
the highest gap in the abacus, it is not the case that ish equals the number of beads in the
abacus.

The picture that had inspired this misunderstanding (Figure 15) should instead have been
reflected across a line through the origin. I had stumbled upon an injection in the set of
simultaneous (3, 3m+ 1)-core partitions between abaci with k beads and abaci with k gaps
before the last bead. This does not happen when n > 3, but perhaps there is something of
interest to study here.

In any case, this implies that when calculating the number of beads in an abacus (in order
to reconcile a sum of bead numbers), the ish statistic is a red herring.

I had tried to approach finding a formula for the ish statistic using Monica’s reference of
her work with Chris Berg. It does appear that something vaguely similar is possible. Instead
of finding a bijection between

{
l-cores with first part λ1

}
and

{
(l−1)-cores with first part

≤ λ1

}
, it makes sense to look for a bijection between and

{
(n, p)-cores with first part λ1

}
and

{
(n, p)-cores with first part ≤ λ1 AND no bead in runner (−p) mod n

}
. The reason

for these unpleasantries has to do with the necessity for the lattice path to stay under a line
with slope n/p.

19.2. Positive data.
I doubt that you had any doubt about the veracity of your conjecture, but Mathematica

crunched some sums and found that your conjecture holds for all (3, 3m + 1), (4, 4m + 1),
through (10, 10m + 1) simultaneous core partitions. For example, to prove (6, 6m + 1)
simultaneous cores, we calculate

m∑
i1=0

m+i1∑
i2=0

· · ·
m+i4∑
i5=0

[ i1∑
j1=0

(6j1 + 1) + · · ·+
i5∑

j5=0

(6j1 + 5)−
(
i1 + · · ·+ i5

2

)]
(# beads = i1 + i2 + i3 + i4 + i5), which sums to

m

24 · 4!
(2 + 6m)(3 + 6m)(4 + 6m)(5 + 6m)(6 + 6m)(8 + 6m);

dividing by
(
6m+7

6

)
/(6m+ 7) = (6m+ 6)5/6! gives (6m+ 1 + 6 + 1)(6− 1)(6m)/24.
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Figure 18. A lattice path from (0, 3) to (7, 0) staying below 3− 3
7
x. The left

figure is the original conception given in Figure 9; the right figure is discussed
in Section 19.3.

After some necessary retooling, I was able to similarly show that your conjecture holds for
all (3, 3m−1), (4, 4m−1), through (10, 10m−1) simultaneous core partitions. For example,
for (7, 7m− 1) simultaneous cores, we calculate

m−1∑
i1=0

m+i1∑
i2=0

· · ·
m+i4∑
i5=0

[ i1∑
j1=0

(7j1 + 6) + · · ·+
i6∑

j6=0

(7j1 + 1)−
(
i1 + · · ·+ i6

2

)]
,

which simplifies to
m

24 · 5!
(−2 + 7m)(1 + 7m)(2 + 7m)(3 + 7m)(4 + 7m)(5 + 7m)(7 + 7m).

Dividing by
(
7m+6

7

)
/(7m+ 6) = (7m+ 5)6/7! gives (7m− 1 + 7 + 1)(7− 1)(7m− 2)/24.

I can also calculate the number of boxes for all simultaneous (n, p)-cores for specific values
of n and p. But looking at this data says that somewhere there is some major canceling
going on! When I look at these answers for the number of boxes and I see a product of
factors that are so similar, it implies to me that we should be able to count the number of
boxes very simply using independent factors. We can see that there should be n factors,
each of which has the form p± x for some x!!!!!! I’m sure it will just pop out some day and
we’ll say ‘Duh!’.

19.3. Lattice paths.
One way I went about this is to revert to Anderson’s lattice paths. I realized that I should

probably be drawing these lattice paths as in Figure 18(b). In this new drawing, the lattice
path is a separation between possible positions with beads and possible positions without
beads. We conclude that the number of beads in the abacus is the area between the lattice
path and the diagonal line. So if there is some way to understand the area statistic for the
set of all lattice paths then this is the quantity that we need to remove from the sum of all
beta numbers.

In addition, the beta numbers are exactly the numbers inside the boxes that are between
the lattice path and the diagonal line. Perhaps an understanding of the area statistic will
lead to an understanding of the distribution of these beta numbers.

Question 19.1. Is anything known about the area statistic for lattice paths from (0, 0) to
(p, n) that stay above the line ny = px?

A natural place to start to understand the area statistic is in the work of Nick Loehr, but
he only addresses area for lattice paths from (0, 0) to (mn, n). (And in that vein, he only
addresses it using a joint distribution.) I have been unable to locate information about the
single-variable distribution of the area statistic for these lattice paths, which must be easier
and is hopefully generalizable.
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Another avenue of approach is from the point of view of “ballot sequences”, which encom-
passes all sorts of questions related to lattice paths satisfying a restriction. I imagine that
once we learn about the area statistic in this case, we might be able to relate it back to the
literature in ballot sequences.

References

[And02] Jaclyn Anderson. Partitions which are simultaneously t1- and t2-core. Disc. Math. 248, 237–243,
2002.

[Arm09] Drew Armstrong. Hyperplane arrangements and diagonal harmonics. arχiv:1005.1949.
[BV08] Chris Berg and Monica Vazirani. (`, 0)-Carter partitions, their crystal-theoretic behavior and gener-

ating function. Electronic Journal of Combinatorics. 15, #R130 (2008).
[Fay11] Matthew Fayers. The t-core of an s-core. J. Combin. Theory Ser. A. 118, 1525–1539, 2011.
[FTV09] Susanna Fishel, Eleni Tzanaki, and Monica Vazirani. Counting Shi regions with a fixed separating

wall. Preprint, 21pp.
[FV09] Susanna Fishel and Monica Vazirani. A bijection between dominant Shi regions and core partitions.

Preprint, 12pp.
[Ric96] Matthew Richards. Some decomposition numbers for Hecke algebras of general linear groups. Math.

Proc. Camb. Phil. Soc. 119, 383–402, 1996.

24


