A proof of Problem 2.4.2

Question: Show that if 100 integers are chosen from $1,2, \ldots, 200$, and one of the integers chosen is less than 16, then there are two chosen numbers such that one of them is divisible by the other.

Answer: Assume that there is a selection of 100 integers such that no two divide one another. As in Application 5, write the 100 integers b_{i} in the form $2^{k} a_{i}$, for an odd number a_{i} (Factor out all the powers of two). Since no two integers b_{i} and b_{j} divide one another, the $100 a_{i}$ all are distinct, so must be the numbers $1,3,5, \ldots, 199$. We consider the possible values for the one integer b^{*} that is less than 16 , and show that in each of those cases, there must be two integers that divide each other.

Case 1: $b^{*}=1,3,5,7,9,11,13$, or 15 . Notice that $3 b^{*}$ is an odd number less than 199. Since there is an integer b_{i} with odd part $a_{i}=3 b^{*}$, then $b^{*} \mid b_{i}$.

Case 2: $b^{*}=2,6,10$, or 14 . In these cases, $b^{*}=2 a^{*}$ for $a^{*}=1,3,5$, or 7 . Consider $a^{\prime}=3 a^{*}$ and $a^{\prime \prime}=9 a^{*}$, both odd integers less than 199. The set of integers $\left\{b^{*}, b^{\prime}, b^{\prime \prime}\right\}$ (with odd parts $\left.\left\{a^{*}, 3 a^{*}, 9 a^{*}\right\}\right)$ contains a set of two integers, one of which divides the other.

Case 3: $b^{*}=4$ or 12. In these cases, $b^{*}=2^{2} a^{*}$ for $a^{*}=1$ or 3 . Consider $a^{\prime}=3 a^{*}, a^{\prime \prime}=9 a^{*}$, and $a^{\prime \prime \prime}=27 a^{*}$, all odd integers less than 199. The set of integers $\left\{b^{*}, b^{\prime}, b^{\prime \prime}, b^{\prime \prime \prime}\right\}$ (with odd parts $\left.\left\{a^{*}, a^{\prime}, a^{\prime \prime}, a^{\prime \prime \prime}\right\}\right)$ contains a set of two integers, one of which divides the other.
(Work out on your own why the statements at the end of Case 2 and Case 3 are valid. Come and see me if you can not figure it out!)

