Connectivity Definitions and Theorems from Weeks 3 and 4

February 13

Connectivity Definitions:
Definition: A graph G is connected if for all $v, w \in V(G)$, there exists a path from v to w.
Definition: G is disconnected if G is not connected.
Definition: A (connected) component H is a maximal subgraph H of G that is connected.
Definition: G is $\underline{k-c o n n e c t e d ~ i f ~}|V(G)|>k$ and removing fewer than k vertices does not disconnect the graph.
(We say that every graph is 0 -connected.)
Definition: The connectivity of G (denoted $\kappa(G)=$ "kappa") is the maximum k such that G is k-connected.
(Conventions: The connectivity of a single vertex is zero and $\kappa\left(K_{n}\right)=n-1$.)
Definition: A cut vertex is a vertex $v \in V(G)$ such that $G \backslash v$ is disconnected.
Definition: A separating set or vertex cut is a set of vertices $X \subset V(G)$ such that $G \backslash X$ is disconnected.
Note: $\kappa(G)=0 \Longleftrightarrow G$ is disconnected or G is a single vertex
Note: $\kappa(G) \geq 2 \Longleftrightarrow G$ has no cut vertex.
Edge Connectivity Definitions:
Definition: G is k-edge-connected if removing fewer than k edges does not disconnect the graph.
(We say that every graph is 0-edge-connected.)
Definition: The edge connectivity of G (denoted $\lambda(G)=$ "lambda" or $\kappa^{\prime}(G)$) is the maximum k such that G is k-edge connected.
Definition: A bridge is an edge $e \in E(G)$ such that $G \backslash e$ is disconnected.
Definition: A DISCONNECTING SET is a set of edges $D \subset E(G)$ such that $G \backslash D$ is disconnected.
Note: $\lambda(G)=0 \Longleftrightarrow G$ is disconnected.
Note: $\lambda(G) \geq 2 \Longleftrightarrow G$ has no bridge.

February 15

Note: If you delete a cut vertex from a graph, the number of connected components increases.
Note: If you delete a bridge from a graph, the number of connected components increases by exactly one.
Theorems:
Theorem: (Book 2.4.1) Let G be connected. Then G is a tree \Longleftrightarrow Every edge of G is a bridge.
Theorem: (Book 3.2.1) A regular graph of even degree has no bridge.
Theorem: For all graphs $G, \lambda(G) \leq \delta(G)$.
Edge Cuts: [not to be confused with cutset or cut vertex]
Definition: Let $X \subset V(G)$. Then X^{c} is the complement of X.
That is, $V(G)=X \cup X^{c}$ and $X \cap X^{c}=\emptyset$.
Definition: For any $X \subset V(G)$ such that $X, X^{c} \neq \emptyset$, an edge cut (denoted $\left[X, X^{c}\right]$) is the set of edges D between X and X^{c}.
Note: An edge cut is a disconnecting set, but not vice versa.
(This implies $\lambda(G) \leq\left|\left[X, X^{c}\right]\right|$ for all $X \subset V(G)$.
Note: A minimal disconnecting set is an edge cut, but not vice versa.
Theorem: For all graphs $G, \kappa(G) \leq \lambda(G)$.

February 18

Blocks:

Definition: A block of a graph G is a maximally connected subgraph of G with no cut vertex.
Note: The following things are true about blocks.

1. G itself may be a block.
2. Except for blocks that are edges, blocks are always 2-connected.
3. Any two blocks share at most one vertex.
4. A vertex shared between blocks is a cut vertex of G.
5. The blocks of G partition $E(G)$.

Definition: The block graph of G is a bipartite graph H with vertices v_{i} representing cut vertices of G, and vertices b_{j} representing blocks of G, where $v_{i} b_{j}$ is an edge of H if vertex v_{i} is a vertex in block b_{j}.
Note: A block graph is always a forest. (Proof in hwk.)
More Graph Statistics:
Definition: An independent set of a graph G is a subset $X \subset V(G)$ such that no edge of G connects any two vertices of X. In other words, the induced subgraph of G on X contains no edges.
Definition: The independence number of a graph G is the size of the maximum independence set of G. It is denoted $\alpha(G)$.
Definition: A vertex cover of a graph G is a subset $X \subset V(G)$ such that X contains (at least) one endpoint of every edge in G.
Definition: The size of the smallest vertex cover is denoted $\beta(G)$.
Theorem: In any graph $G, X \subset V(G)$ is an independent set $\Longleftrightarrow X^{c}$ is a vertex cover.
Theorem: For all graphs $G, \alpha(G)+\beta(G)=|V(G)|$.
Note: Finding an independent set X and a vertex cover Y such that $|X|+|Y|=|V(G)|$ implies that $\alpha(G)=|X|$ and $\beta(G)=|Y|$.
Definition: The clique number $\omega(G)$ of a graph G is the largest number k such that K_{k} is a subgraph of G.

February 20

Characterization of 2-connectedness:
Theorem: (Whitney, 1932 aka MINI-Menger) Let G be a graph with ≥ 3 vertices. Then G is 2-connected \Longleftrightarrow for all $v, w \in V(G)$, there exist two internally disjoint v, w-paths in G.
Theorem: (Menger) G is k-connected \Longleftrightarrow for all $v, w \in V(G)$, there exist k internally disjoint v, w-paths in G.
 and ends in H.
Definition: An ear decomposition is a construction of G starting with some cycle C, and at each step successively adding to the existing graph H some H-path.
Theorem: G is 2-connected $\Longleftrightarrow G$ has an ear decomposition.
Theorem: Let G be a graph with ≥ 3 vertices. The following are equivalent:

1. G is 2-connected.
2. G is connected and has no cut vertex.
3. G is a block.
4. For all $v, w \in V(G)$, there exist two internally disjoint v, w-paths in G.
5. For all $v, w \in V(G)$, there exists a cycle in G through v and w.
6. $\delta(G)>0$ and for all $e, f \in E(G)$, there exists a cycle in G through e and f.
7. G has an ear decomposition.

List of graph statistics so far

$\alpha(G)$
$\beta(G)$
$\delta(G)$
$\Delta(G)$
$\kappa(G)$
$\lambda(G)$
$\omega(G)$
$\operatorname{diam}(G)$
$g(G)$

