
Other Definitions in Graph Theory

from Weeks 7–10

March 10 (Day 21)

Modifications of Graphs:
Notation Mathspeak Modification in words
G\v delete v remove v and all edges e incident with v.
G\e delete e remove e
G/e contract e if e = v1v2, then replace v1 and v2 with a “super-vertex” v

that is adjacent to all neighbors of v1 and v2.

Note: Edge contraction of a graph may result in a multigraph!
Definition: The inverse operation of edge contraction is called vertex splitting.
Definition: A graph H is called an expansion of G if H is obtained from G by a sequence of vertex
splittings.
Definition: subdividing an edge e is replacing e with a path of any length.
Definition: A graph H is a subdivision of G if H arises by subdividing some of the edges of G.
Note: Successive edge contractions can help revert a subdivision of G back to G.

Definition: A graph H is a minor of a graph G if H can be obtained from G via repeated edge
deletion and/or edge contraction.
Lemma: If G is not planar, a subdivision of G is not planar.
Lemma: If G contains a nonplanar subgraph, G is not planar.

Theorem: (Kuratowski’s Theorem = Book Theorems 9.1.1 AND 9.1.2)
G is nonplanar if and only if G contains a subgraph that is a subdivision of K5 or K3,3.
(Restatement) G is nonplanar if and only if G has K5 or K3,3 as a minor.

March 20 (Day 22)

Graph Complements:
The complement of a graph G, denoted either Gc or G, is a graph with the same vertex set but

that has every edge NOT in G.
A graph G is self-complementary if Gc is isomorphic to G. Examples: P3 and C5.
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March 29 (Day 26)

de Bruijn Sequences:
The sequence 0000110101111001 is a sequence of length 16 that contains each of the sixteen

binary sequences of length 4 (cycling allowed).
0000 0100 1000 1100
0001 0101 1001 1101
0010 0110 1010 1110
0011 0111 1011 1111

This is an example of a binary de Bruijn sequence. It is the most compact way we could represent
these sixteen sequences.
Definition: A sequence is a succession of numbers s1s2s3 . . . sl.
Definition: The value l is called the length of the sequence.
Definition: A binary sequence is a succession of 0’s and 1’s.
Definition: A de Bruijn sequence of order n on the alphabet A = {a1, a2, . . . , ak} is a sequence
S = s1s2 . . . skn of length kn such that every sequence b1b2 . . . bn of length n on A is a consecutive sub-
sequence of S. That is, there exists an i with 1 ≤ i ≤ kn such that b1b2 . . . bn = sisi+1si+2 . . . si+n−1.
Definition: A binary de Bruijn sequence of order n is a de Bruijn sequence of order n on the
alphabet A = {0, 1}.
Theorem: A de Bruijn sequence of order n on A = {a1, a2, . . . , ak} always exists.

Proof: (using graph theory!)
Definition: A de Bruijn graph of order n on A is a directed pseudograph that has as its nodes
sequences of letters of length n − 1. Each node has k out-edges, represented by the letters of the
alphabet A. Following edge ai adds the letter ai to the end of the sequence and removes the first
letter from the sequence.

For example, b1b2 . . . bn−1

ai→ b2 . . . bn−1ai and b1b2 . . . bn−1

aj

→ b2 . . . bn−1aj .
You know you’re done placing edges when ever vertex has k out-edges.
Proof: (continued) A de Bruijn sequence ⇐⇒ an Eulerian tour of the corresponding de Bruijn

graph.
This is because each edge represents a unique n-letter sequence: the n−1 letters from the initial

node of the edge plus the nth letter along the edge.
This graph has an Eulerian tour because the in-degree = out-degree of each vertex (the analogous

result to the “Each vertex has even degree” theorem from Chapter 3.)
Ex. 1111011001010000 is a binary de Bruijn sequence of order 4.

Fact: There are 22n−1

binary de Bruijn sequences of order n.
Proof: Surprisingly, using determinants of Laplacians (those matrices from Day 26)!
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Knight’s Tours:
Definition: A knight refers to a chess piece moves two squares vertically and one square horizontally,
or vice versa. Such a move is called a knight move.
Definition: A (closed) knight’s tour is a succession of knight moves that visits each square on the
chessboard exactly once (and returns to the first square).
Note: If you create a graph by drawing an edge between every two squares in the chessboard that
are a knight move away, the problem of finding a knight’s tour reduces to a problem of finding a
Hamiltonian cycle in this graph. As we know, finding a Hamiltonian cycle in a graph is hard, but
we do know on which m × n chessboards there is a knight’s tour.
Theorem: If you have an m×n chessboard, where m ≤ n, then there is a knight’s tour unless one
of the following holds.

1. m and n are both odd.

2. m equals 1, 2, or 4.

3. m equals 3 and n equals 4, 6, or 8.
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