Other Definitions in Graph Theory from Weeks 7-10

March 10 (Day 21)

Modifications of Graphs:

Notation	Mathspeak	Modification in words
$G \backslash v$	delete v	remove v and all edges e incident with v.
$G \backslash e$	delete e	remove e
G / e	contract e	if $e=v_{1} v_{2}$, then replace v_{1} and v_{2} with a "super-vertex" v
		that is adjacent to all neighbors of v_{1} and v_{2}.

Note: Edge contraction of a graph may result in a multigraph!
Definition: The inverse operation of edge contraction is called vertex splitting.
Definition: A graph H is called an expansion of G if H is obtained from G by a sequence of vertex splittings.
Definition: subdividing an edge e is replacing e with a path of any length.
Definition: A graph H is a subdivision of G if H arises by subdividing some of the edges of G.
Note: Successive edge contractions can help revert a subdivision of G back to G.
Definition: A graph H is a minor of a graph G if H can be obtained from G via repeated edge deletion and/or edge contraction.
Lemma: If G is not planar, a subdivision of G is not planar.
Lemma: If G contains a nonplanar subgraph, G is not planar.
Theorem: (Kuratowski's Theorem = Book Theorems 9.1.1 AND 9.1.2)
G is nonplanar if and only if G contains a subgraph that is a subdivision of K_{5} or $K_{3,3}$. (Restatement) G is nonplanar if and only if G has K_{5} or $K_{3,3}$ as a minor.

March 20 (Day 22)

Graph Complements:
The complement of a graph G, denoted either G^{c} or \bar{G}, is a graph with the same vertex set but that has every edge NOT in G.

A graph G is self-complementary if G^{c} is isomorphic to G. Examples: P_{3} and C_{5}.

March 29 (Day 26)

de Bruijn Sequences:

The sequence 0000110101111001 is a sequence of length 16 that contains each of the sixteen binary sequences of length 4 (cycling allowed).

0000	0100	1000	1100
0001	0101	1001	1101
0010	0110	1010	1110
0011	0111	1011	1111

This is an example of a binary de Bruijn sequence. It is the most compact way we could represent these sixteen sequences.
Definition: A sequence is a succession of numbers $s_{1} s_{2} s_{3} \ldots s_{l}$.
Definition: The value l is called the length of the sequence.
Definition: A binary sequence is a succession of 0's and 1's.
Definition: A de Bruijn sequence of order n on the alphabet $\mathcal{A}=\left\{a_{1}, a_{2}, \ldots, a_{k}\right\}$ is a sequence $S=s_{1} s_{2} \ldots s_{k^{n}}$ of length k^{n} such that every sequence $b_{1} b_{2} \ldots b_{n}$ of length n on \mathcal{A} is a consecutive subsequence of S. That is, there exists an i with $1 \leq i \leq k^{n}$ such that $b_{1} b_{2} \ldots b_{n}=s_{i} s_{i+1} s_{i+2} \ldots s_{i+n-1}$. Definition: A binary de Bruijn sequence of order n is a de Bruijn sequence of order n on the alphabet $\mathcal{A}=\{0,1\}$.
Theorem: A de Bruijn sequence of order n on $\mathcal{A}=\left\{a_{1}, a_{2}, \ldots, a_{k}\right\}$ always exists.
Proof: (using graph theory!)
Definition: A de Bruijn graph of order n on \mathcal{A} is a directed pseudograph that has as its nodes sequences of letters of length $n-1$. Each node has k out-edges, represented by the letters of the alphabet \mathcal{A}. Following edge a_{i} adds the letter a_{i} to the end of the sequence and removes the first letter from the sequence.

For example, $b_{1} b_{2} \ldots b_{n-1} \xrightarrow{a_{i}} b_{2} \ldots b_{n-1} a_{i}$ and $b_{1} b_{2} \ldots b_{n-1} \xrightarrow{a_{j}} b_{2} \ldots b_{n-1} a_{j}$.
You know you're done placing edges when ever vertex has k out-edges.
Proof: (continued) A de Bruijn sequence \Longleftrightarrow an Eulerian tour of the corresponding de Bruijn graph.

This is because each edge represents a unique n-letter sequence: the $n-1$ letters from the initial node of the edge plus the nth letter along the edge.

This graph has an Eulerian tour because the in-degree = out-degree of each vertex (the analogous result to the "Each vertex has even degree" theorem from Chapter 3.)

Ex. 1111011001010000 is a binary de Bruijn sequence of order 4.
Fact: There are $2^{2^{n-1}}$ binary de Bruijn sequences of order n.
Proof: Surprisingly, using determinants of Laplacians (those matrices from Day 26)!

Knight's Tours:
Definition: A knight refers to a chess piece moves two squares vertically and one square horizontally, or vice versa. Such a move is called a knight move.
Definition: A (closed) knight's tour is a succession of knight moves that visits each square on the chessboard exactly once (and returns to the first square).
Note: If you create a graph by drawing an edge between every two squares in the chessboard that are a knight move away, the problem of finding a knight's tour reduces to a problem of finding a Hamiltonian cycle in this graph. As we know, finding a Hamiltonian cycle in a graph is hard, but we do know on which $m \times n$ chessboards there is a knight's tour.
Theorem: If you have an $m \times n$ chessboard, where $m \leq n$, then there is a knight's tour unless one of the following holds.

1. m and n are both odd.
2. m equals 1,2 , or 4 .
3. m equals 3 and n equals 4,6 , or 8 .
