Connectedness Definitions and Theorems from Week 6 (2/27–3/3)

February 27 (Day 16)

Connectedness Definitions:

Definition: A graph G is <u>connected</u> if for all $v, w \in V(G)$, there exists a path from v to w.

Definition: G is <u>disconnected</u> if G is not connected.

Definition: A (connected) component H is a MAXIMAL subgraph H of G that is connected.

Definition: G is <u>k-connected</u> if removing fewer than k vertices does not disconnect the graph.

Definition: The <u>connectivity</u> of G (denoted $\kappa(G) =$ "kappa") is the maximum k such that G is k-connected.

(Caveat: The connectivity of a single point is zero and $\kappa(K_n) = n - 1$.)

Definition: A <u>cut vertex</u> is a vertex $v \in V(G)$ such that $G \setminus v$ is disconnected.

Definition: A <u>SEPARATING SET</u> or <u>vertex cut</u> or <u>cut set</u> is a set of vertices $X \subset V(G)$ such that $G \setminus X$ is disconnected.

Note: : $\kappa(G) = 0 \iff G$ is disconnected

Note: : $\kappa(G) \ge 2 \iff G$ has no cut vertex.

Edge Connectedness Definitions:

Definition: G is <u>k-edge connected</u> if removing fewer than k edges does not disconnect the graph. **Definition:** The edge connectivity of G (denoted $\kappa'(G) =$ "kappa") is the maximum k such that G is k-edge connected.

Definition: A bridge is an edge $e \in E(G)$ such that $G \setminus e$ is disconnected.

Definition: A <u>DISCONNECTING SET</u> is a set of edges $D \subset E(G)$ such that $G \setminus D$ is disconnected.

Note: : $\kappa'(G) = 0 \iff G$ is disconnected.

Note: : $\kappa'(G) \ge 2 \iff G$ has no bridge.

Note: : If you remove a cut vertex, you increase the number of connected components.

Note: : If you remove a bridge, you increase the number of connected components by exactly one.

Theorems:

Theorem: (Book 2.4.1) Let G be connected. Then G is a tree \iff Every edge of G is a bridge. **Theorem:** (Book 3.2.1) A regular graph of even degree has no bridge.

Theorem: For all graphs G, $\kappa'(G) \leq \delta(G)$.

March 1 (Day 17)

Edge Cuts & A proof: Note: $\kappa(G) \leq |V(G)| - 1$ Definition: Let $X \subset V(G)$. Then X^c is the complement of X. That is, $V(G) = X \cup X^c$ and $X \cap X^c = \emptyset$. Definition: For any $X \subset V(G)$ such that $X, X^c \neq \emptyset$, an edge cut (denoted $[X, X^c]$) is the set of edges D between X and X^c . Note: An edge cut is a disconnecting set, but not vice versa. Note: A minimal disconnecting set is an edge cut, but not vice versa. Theorem: For all graphs $G, \kappa(G) \leq \kappa'(G)$. Vertex Covers:

Definition: A <u>vertex cover</u> of a graph G is a subset $X \subset V(G)$ such that X contains (at least) one endpoint of every edge in G.

Definition: The size of the smallest vertex cover is denoted $\beta(G)$.

Theorem: In any graph $G, X \subset V(G)$ is an independent set $\iff X^c$ is a vertex cover. **Theorem:** For all graphs $G, \alpha(G) + \beta(G) = |V(G)|$.

Discussion Section:

In discussion class, March 2, we remarked that the following theorem is true. **Theorem:** If G has a Hamiltonian cycle, then $\kappa(G) \ge 2$ and $\kappa'(G) \ge 2$.

March 3 (Day 18)

Blocks:

Definition: A <u>block</u> of a graph G is a maximally connected subgraph of G with no cut vertex. **Note:** The following things are true about blocks.

- 1. G itself may be a block.
- 2. Except for blocks that are edges, blocks are always 2-connected.
- 3. Any two blocks share at most one vertex.
- 4. A vertex shared between blocks is a cut vertex of G.
- 5. The blocks of G partition E(G).

Definition: The block graph of G is a bipartite graph H with vertices v_i representing cut vertices of G, and vertices b_j representing blocks of G, where $v_i b_j$ is an edge of H if vertex v_i is a vertex in block b_j .

Note: A block graph is always a forest. (Proof in hwk.)

Characterization of 2-connectedness:

Theorem: (Whitney, 1932 aka MINI-Menger) Let G be a graph with ≥ 3 vertices. Then G is 2-connected \iff for all $v, w \in V(G)$, there exist two internally disjoint v, w-paths in G.

Theorem: (Menger) G is k-connected \iff for all $v, w \in V(G)$, there exist k internally disjoint v, w-paths in G.

Definition: Let H be any subgraph of G. Then an <u>H-path</u> (or an <u>ear</u>) is a path in G that starts and ends in H.

Definition: An ear decomposition is a construction of G starting with some cycle C, and at each step successively adding to the existing graph H some H-path.

Theorem: G is 2-connected \iff G has an ear decomposition.

Theorem: Let G be a graph with ≥ 3 vertices. The following are equivalent:

- 1. G is 2-connected.
- 2. G is connected and has no cut vertex.
- 3. G is a block.
- 4. For all $v, w \in V(G)$, there exist two internally disjoint v, w-paths in G.
- 5. For all $v, w \in V(G)$, there exists a cycle in G through v and w.
- 6. $\delta(G) > 0$ and for all $e, f \in E(G)$, there exists a cycle in G through e and f.
- 7. G has an ear decomposition.