Practice Quiz, Week 13
 November 22, 2006

1. (7 pts) The below curve is defined on the interval $[1,7]$.

(a) What is the area under the curve on the interval $[1,7]$?
(b) Approximate this area by a Riemann sum using left endpoints when $n=3$. Write out the sum you are taking before evaluating it!
(c) Approximate this area by a Riemann sum using midpoints when $n=6$. Write out the sum you are taking before evaluating it!
2. (3 pts) Fill in the blank. The right-hand Riemann sum is a lower approximation for the area under the curve $f(x)$ if f is \qquad . (Hint: Draw a picture!)
3. (4 pts) The function $f(x)=\sin ^{2} x+x$ is increasing on the interval $[\pi / 2, \pi]$. Use Problem 23.3 c to find upper and lower bounds on the integral

$$
\int_{\pi / 2}^{\pi}\left(\sin ^{2} x+x\right) d x
$$

4. (6 pts) Using summation notation, give the definition of the definite integral $\int_{-1}^{1} x^{3} d x$.
5. (4 pts each) Take the following definite integrals.
(a) $\int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \sin t d t=$
(b) $\int_{0}^{3}\left|x^{2}-1\right| d x=$
6. (4 pts) Use the Fundamental Theorem of Calculus to solve

$$
\frac{d}{d x} \int_{1}^{\sqrt{x}} \frac{2 x^{2}}{\tan x}
$$

7. (6 pts) It's pouring down rain! The rate at which water is entering my rain barrel is given by $r(t)=2-t^{1 / 2}$ inches/hour for $0 \leq t \leq 4$. Determine the how full the rain barrel is after four hours.
