§3.3 Combinatorial Interpretations

We learned that the number of ways to choose k objects out of n total objects is $\binom{n}{k}$. We can use this fact "backwards" by interpreting an occurrence of $\binom{n}{k}$ as the number of ways to choose k objects out of n.

Using a combinatorial interpretation of a numerical quantity lets us prove identities in a new way!

Theorem 3.3.2: For $0 \leq r \leq n,\binom{n}{r}=\binom{n}{n-r}$.
Analytic Proof:
$\binom{n}{r}=\frac{n!}{r!(n-r)!}=\frac{n!}{(n-r)!(n-(n-r))!}=\binom{n}{n-r}$
Combinatorial Proof:
We will show that both sides of the equation count the same quantity. Therefore they must be equal.

Q: In how many ways can we adopt r of n cats available for adoption at the shelter?

A:

Combinatorial Proofs

Equation (5.2): $k\binom{n}{k}=n\binom{n-1}{k-1}$.
Analytic Proof:

Combinatorial Proof: In how many ways can we choose from n club members a committee of k members with a chairperson?

Because the two quantities count the same set of objects in two different ways, they are equal.

Combinatorial Proofs

Theorem 5.1.1: $\binom{n}{k}=\binom{n-1}{k}+\binom{n-1}{k-1}$.
Analytic Proof:

Combinatorial Proof: In how many ways can we choose k flavors of ice cream if n different choices are available?

Because the two quantities count the same set of objects in two different ways, they are equal.

Combinatorial Proofs

Theorem 3.3.3: $\binom{n}{0}+\binom{n}{1}+\binom{n}{2}+\cdots+\binom{n}{n}=2^{n}$.
Analytic Proof: ???

Combinatorial Proof: Let us count the number of subsets of $\{1,2, \ldots, n\}$ in two different ways:

Because the two quantities count the same set of objects in two different ways, they are equal.
—Worksheet-

Bijections

A useful method of proving that two sets A and B are equal is by way of a bijection, a rule or function that pairs up elements of A and elements of B.

Notation:
$f: A \rightarrow B$ " f is a function from A to B."
$f: a \mapsto b$ " f maps element $a \in A$ to element $b \in B$.

A bijection is more than a simple rule-

Definition: A function $f: A \rightarrow B$ is one-to-one or an injection if whenever $f(a)=f(b)$, then $a=b$.

Definition: A function $f: A \rightarrow B$ is onto or a surjection if for all $b \in B$, there is some $a \in A$ such that $f(a)=b$.

Definition: A bijection is a function that is one-to-one and onto.

The existence of a bijection proves that two sets are equinumerous.

Bijections

Simple Example: Prove that $\binom{n}{r}=\binom{n}{n-r}$.
Intuition: The LHS counts ways to choose r of n, while the RHS counts ways to choose $n-r$ from n. First, choose something concrete, such as choosing r or $n-r$ marbles out of a bag. Next, find a way to match up those two sets in a logical way. Proof: Let A be the set of all ways to choose r out of a bag of n distinct marbles. Let B be the set of all ways to choose $n-r$ out of a bag of n distinct marbles.

We will show that the function f is a bijection, where $f: A \rightarrow B$ is defined by:
f is one-to-one:
f is onto:

This proves that f is a bijection. Therefore $|A|=|B|$, as desired.

Bijections

Prove the following binomial identity:
$\binom{n}{0}+\binom{n}{2}+\binom{n}{4}+\cdots=\binom{n}{1}+\binom{n}{3}+\binom{n}{5}+\cdots$.
Bijective Proof: We consider the number of ways to choose a subset of $\{1,2, \ldots, n-1, n\}$.

- The LHS counts subsets S with an even number of elements while the RHS counts odd subsets T.
- Construct a bijection f between $A:=\{S\}$ and $B:=\{T\}$: Let S be any subset with an even number of elements.
- If $n \in S$, then define $f(S)=S \backslash\{n\}$.
- If $n \notin S$, then define $f(S)=S \cup\{n\}$.
- Claim: This rule is a bijection.
- Why is $f(S)$ in B ?
- Why is f one-to-one and onto?

For another proof, see pages 132-133.

