Catalan Numbers

Four combinatorial objects to count:

1. Triangulations of an n + 2-gon

2. Walks from (0,0) to (n,n) staying above y = x

3. Sequences of length 2n with n + 1's and n - 1's such that every partial sum is ≥ 0

4. Ways to multiply n + 1 numbers together.

Catalan Numbers C_0 C_1 C_2 C_3 C_4 C_5 C_6 C_7 C_8 C_9 1125144213242914304862

These are four of the many many combinatorial interpretations of the Catalan numbers,

$$C_n = \frac{1}{n+1} \begin{pmatrix} 2n \\ n \end{pmatrix}.$$

We claim that C_n is equal to:

triangulations	lattice paths	+/- seq's w/pos.	mult. schemes
n + 2-gon	(0,0) ightarrow (n,n)	part. sums, len. n	n+1 numbers

So there should be bijections between the sets!

Bijection 1:	triangulations	$\left \longleftrightarrow \right $	multiplication schemes
	n + 2-gon		n+1 numbers

Rule: label all but one side of the n + 2-gon. Start on the outside and work in. When you know two sides of a triangle, multiply them together. Determine the multiplication scheme of the last edge.

Catalan Numbers

Bijection 2:

mult. schemes n+1 numbers

+/- sequences of length n with positive partial sums

Rule: Place dots to represent multiplications. Ignore everything except the dots and right parentheses. Replace the dots by +1's and the parentheses by -1's.

Bijection 3: $\begin{array}{c} +/-\text{ seq's, len. }n\\ \text{pos. partial sums} \end{array} \longleftrightarrow \begin{bmatrix} \text{lattice path walks from}\\ (0,0) \rightarrow (n,n) \text{ above } y = x \end{bmatrix}$

A sequence of +'s and -'s converts to a sequence of N's and E's, which is a path in the lattice.

Catalan Number Formula

Goal: Prove the formula for Catalan numbers.

Proof 1. [via the triangulation interpretation of the Catalan numbers and recurrences] Define $h_n = C_{n-1}$ to be the number of triangulations of an n + 1-gon. We count this differently:

The n+1-st side must be involved in some triangle, defined by the third vertex of the triangle. There are n-1 choices for this vertex. For each, determine in how many ways we can finish the triangulation:

Case v_i . To the left:_____-gon. To the right:_____-gon.

Hence, the total number of ways to triangulate is:

$$h_n = \sum_{i=1}^{n} h_1 = 1$$

For example, $h_2 = h_3 = h_4 =$ What do these recurrences remind you of?

Catalan Number Formula

Suppose $g(x) = h_1 x + h_2 x^2 + h_3 x^3 + \cdots$ Then $g(x)^2 = (h_1 h_1) x^2 + (h_1 h_2 + h_2 h_1) x^3 + \cdots$.

$$g(x)^{2} = \sum_{n \ge 0} \left(\sum_{i=1}^{n-1} h_{i} h_{n-i} \right) x^{n}$$

So, $g(x) - (g(x))^2 =$

And we can solve this equation for g(x).

Back on page 41 of the notes, we proved

$$\sqrt{1-4x} = 1 - 2 \sum_{n \ge 1} \frac{1}{n} {2n-2 \choose n-1} x^n.$$

Therefore,

Catalan Number Formula

Proof 2. [a direct combinatorial approach using lattice paths] Define $C(x) = \sum_{n\geq 0} C_n x^n$. Weight each of the lattice paths by placing a weight of x on each North step and a weight of 1 on each East step. Therefore, each lattice path from (0,0)to (n,n) has weight _____. What is the weighted sum over all lattice paths of the weights of the lattice paths?_____.

Let us count this quantity in another way. Either your path has a North step or it does not. The path with no North step has weight 1. Every other path starts with a North step and eventually returns to the line y = x somewhere.

Schematic:

Therefore, $C(x) = 1 + xC(x)^2$. Solving for C(x), we have

[Explains all the comb. interp's of the Catalan #s!]