Catalan Numbers

Four combinatorial objects to count:

1. Triangulations of an $n+2-$ gon
2. Walks from $(0,0)$ to (n, n) staying above $y=x$
3. Sequences of length $2 n$ with $n+1$'s and $n-1$'s such that every partial sum is ≥ 0
4. Ways to multiply $n+1$ numbers together.

Catalan Numbers

$$
\begin{array}{cccccccccc}
C_{0} & C_{1} & C_{2} & C_{3} & C_{4} & C_{5} & C_{6} & C_{7} & C_{8} & C_{9} \\
1 & 1 & 2 & 5 & 14 & 42 & 132 & 429 & 1430 & 4862
\end{array}
$$

These are four of the many many combinatorial interpretations of the Catalan numbers,

$$
C_{n}=\frac{1}{n+1}\binom{2 n}{n}
$$

We claim that C_{n} is equal to:

triangulations	lattice paths	$+/-$ seq's w/pos.	mult. schemes
$n+2$-gon	$(0,0) \rightarrow(n, n)$	part. sums, len. n	$n+1$ numbers

So there should be bijections between the sets!

Bijection 1: $\begin{gathered}\text { triangulations } \\ n+2 \text {-gon }\end{gathered} ~ \longleftrightarrow \begin{gathered}\text { multiplication schemes } \\ n+1 \text { numbers }\end{gathered}$
Rule: label all but one side of the $n+2$-gon. Start on the outside and work in. When you know two sides of a triangle, multiply them together. Determine the multiplication scheme of the last edge.

Catalan Numbers

Rule: Place dots to represent multiplications. Ignore everything except the dots and right parentheses. Replace the dots by +1 's and the parentheses by -1 's.

Bijection 3: | $+/-$ seq's, len. n |
| :--- |
| pos. partial sums |\(~ \longleftrightarrow \begin{gathered}lattice path walks from

(0,0) \rightarrow(n, n) above y=x\end{gathered}\) A sequence of + 's and -'s converts to a sequence of N 's and E 's, which is a path in the lattice.

Catalan Number Formula

Goal: Prove the formula for Catalan numbers.
Proof 1. [via the triangulation interpretation of the Catalan numbers and recurrences]
Define $h_{n}=C_{n-1}$ to be the number of triangulations of an $n+1$-gon. We count this differently:

The $n+1$-st side must be involved in some triangle, defined by the third vertex of the triangle.
There are $n-1$ choices for this vertex. For each, determine in how many ways we can finish the triangulation:

Case v_{i}.
To the left:___-gon.
To the right:___-gon.
Hence, the total number of ways to triangulate is:

$$
h_{n}=\sum_{i=}
$$

$$
h_{1}=
$$

For example, $h_{2}=$ $h_{3}=$ $h_{4}=$
What do these recurrences remind you of?

Catalan Number Formula

Suppose $g(x)=h_{1} x+h_{2} x^{2}+h_{3} x^{3}+\cdots$
Then $g(x)^{2}=\left(h_{1} h_{1}\right) x^{2}+\left(h_{1} h_{2}+h_{2} h_{1}\right) x^{3}+\cdots$.

$$
g(x)^{2}=\sum_{n \geq 0}\left(\sum_{i=1}^{n-1} h_{i} h_{n-i}\right) x^{n}
$$

So, $g(x)-(g(x))^{2}=$

And we can solve this equation for $g(x)$.

Back on page 41 of the notes, we proved

$$
\sqrt{1-4 x}=1-2 \sum_{n \geq 1} \frac{1}{n}\binom{2 n-2}{n-1} x^{n} .
$$

Therefore,

Catalan Number Formula

Proof 2. [a direct combinatorial approach using lattice paths] Define $C(x)=\sum_{n \geq 0} C_{n} x^{n}$. Weight each of the lattice paths by placing a weight of x on each North step and a weight of 1 on each East step. Therefore, each lattice path from (0,0) to (n, n) has weight __. What is the weighted sum over all lattice paths of the weights of the lattice paths? \qquad

Let us count this quantity in another way. Either your path has a North step or it does not. The path with no North step has weight 1. Every other path starts with a North step and eventually returns to the line $y=x$ somewhere.

Schematic:
Therefore, $C(x)=1+x C(x)^{2}$.
Solving for $C(x)$, we have
[Explains all the comb. interp's of the Catalan \#s!]

