Partitions

A partition of a set S is a decomposition of S into disjoint non-empty parts (subsets)

$$
S=A_{1} \cup A_{2} \cup \cdots \cup A_{k} ; \quad A_{i} \neq \emptyset
$$

A partition of an integer n is a decomposition of n as a sum of non-zero parts (integers)

$$
n=n_{1}+n_{2}+\cdots+n_{k} ; \quad n_{i}>0
$$

How this fits into our earlier framework:

	Placing p distinguishable objects	\qquad indistinguishable objects

Counting Set Partitions

The Stirling number of the second kind counts the number of ways to partition a set of p elements into k non-empty subsets. Notation: $S(p, k)$ or $\left\{\begin{array}{l}p \\ k\end{array}\right\}$.
$\left.\left.\begin{array}{c|ccccccc}p \backslash & \left\{\begin{array}{l}p \\ 0\end{array}\right\} & \left\{\begin{array}{l}p \\ 1\end{array}\right\} & \left\{\begin{array}{l}p \\ 2\end{array}\right\} & \left\{\begin{array}{l}p \\ 3\end{array}\right\}\end{array}\right\}\left\{\begin{array}{l}p \\ 4\end{array}\right\},\left\{\begin{array}{l}p \\ 5\end{array}\right\}\right\}\left\{\begin{array}{l}p \\ 6\end{array}\right\}$

Do you notice any patterns?

Recurrence: $\left\{\begin{array}{l}p \\ k\end{array}\right\}=$
In how many ways can we place p objects into k boxes? Condition on the placement of element \#1:

Stirling number formula

Goal: Find a formula for $S(p, k)$. We know $S(p, k)=$ number of ways to put p distinguishable objects in k nonempty indistinguishable boxes. Define $S^{\#}(p, k)=$ number of ways to put p distinguishable objects in k nonempty distinguishable boxes. Then $S(p, k)$ and $S^{\#}(p, k)$ are related by:

Method: Use Inc/Exc to find a formula for $S^{\#}(p, k)$: (condition on whether Box $1 \ldots$ Box k is empty.)

For all i, let A_{i} be the set of all ways to place p objects in k boxes if Box i is empty.

Then $S^{\#}(p, k)=|S|-\left|A_{1} \cup A_{2} \cup \cdots \cup A_{k}\right|$;
$|S|=$
$\left|A_{i}\right|=$
$\left|A_{i} \cap A_{j}\right|=$
Therefore,
$\begin{aligned} S^{\#}(p, k) & =\bar{T}^{k}-\ldots \overline{+}+\ldots-\cdots \\ & =\sum_{t=0}^{k}(-1)^{t}\binom{k}{t}(k-t)^{p} \\ \text { So, } S(p, k) & =\frac{1}{k!} \sum_{t=0}^{k}(-1)^{t}\binom{k}{t}(k-t)^{p}\end{aligned}$

Bell Numbers

Let B_{p} be the number of partitions of a set with p elements. (Any number of non-empty parts.)

$$
B_{p}=\left\{\begin{array}{l}
p \\
0
\end{array}\right\}+\left\{\begin{array}{c}
p \\
1
\end{array}\right\}+\left\{\begin{array}{c}
p \\
2
\end{array}\right\}+\cdots+\left\{\begin{array}{l}
p \\
p
\end{array}\right\}
$$

$\begin{array}{llllllllll}B_{0} & B_{1} & B_{2} & B_{3} & B_{4} & B_{5} & B_{6} & B_{7} & B_{8} & B_{9}\end{array}$
$\begin{array}{llllllllll}1 & 1 & 2 & 5 & 15 & 52 & 203 & 877 & 4140 & 21147\end{array}$

The Bell numbers satisfy a recurrence: (Thm 8.2.7)

$$
B_{p}=\binom{p-1}{0} B_{0}+\binom{p-1}{1} B_{1}+\cdots+\binom{p-1}{p-1} B_{p-1}
$$

We prove this combinatorially by conditioning on the box containing the last element p :

How many partitions of $\{1, \cdots, p\}$ are there if there are k elements in the box with p ?

Partitions of Integers

A partition of an integer n is a decomposition of n indistinguishable objects into indistinguishable boxes. $3+1+1,1+3+1$, and $1+1+3$ are all the same, so we will write the numbers in non-increasing order.

When we discuss partitions of an integer, (say n) we often use the letters λ, μ, and ν. We'll write:

$$
\lambda: n=n_{1}+n_{2}+\cdots+n_{k} \text { or } \lambda \vdash n .
$$

For example,
$\lambda: 5=3+1+1$, or $\lambda=311$, or $\lambda=3^{1} 1^{2}$, or $311 \vdash 5$.
A pictoral representation of $\lambda=n_{1} n_{2} \cdots n_{k}$ is its Ferrers diagram, a left-justified array of dots with k rows, containing n_{i} dots in row i.

Example: 42211 $\vdash 10$ is represented by

The conjugate of a partition λ is the partition λ^{*} which interchanges rows and columns.
Some partitions are self-conjugate, satisfying $\lambda=\lambda^{*}$.

Counting Partitions

Let p_{n} denote the number of partitions of n. Then,

$$
\begin{array}{cccccccccc}
p_{0} & p_{1} & p_{2} & p_{3} & p_{4} & p_{5} & p_{6} & p_{7} & p_{8} & p_{9} \\
1 & 1 & 2 & 3 & 5 & 7 & 11 & 15 & 22 & 30
\end{array}
$$

These numbers have a very ugly formula but a very beautiful generating function.

$$
P(n)=\frac{1}{\pi \sqrt{2}} \sum_{k=1}^{\infty} A_{k}(n) \sqrt{k} \frac{d}{d n}\left[\frac{\sinh \left(\frac{\pi}{\frac{1}{k}} \sqrt{\frac{2}{3}\left(n-\frac{1}{24}\right)}\right)}{\sqrt{n-\frac{1}{24}}}\right],
$$

Think about breaking down the integer n into some number of parts of size 1 , size 2 , size 3 , etc. We can write down a generating function for each size and then multiply them together.

Parts of size 1:

Parts of size 2 :

Parts of size k :

Therefore, $p(x)=\sum_{n=0}^{\infty} p_{n} x^{n}=$

Theorems involving Partitions

Theorem: The number of partitions q_{n} of n with no parts equal to 1 is $p_{n}-p_{n-1}$.
Proof. The generating function for $\left\{q_{n}\right\}$ is:

$$
\begin{aligned}
q(x) & =\frac{1}{1-x^{2}} \frac{1}{1-x^{3}} \frac{1}{1-x^{4}} \cdots \\
& =(1-x) p(x) \\
& =(1-x)\left(\sum_{n \geq 0} p_{n} x^{n}\right) \\
& =\left(\sum_{n \geq 0} p_{n} x^{n}\right)-\left(\sum_{n \geq 0} p_{n} x^{n+1}\right) \\
& =\left(\sum_{n \geq 0} p_{n} x^{n}\right)-\left(\sum p \quad x\right) \\
& =
\end{aligned}
$$

Theorem: The number of partitions of n whose largest part is k is equal to the number of partitions of n with k parts.
Proof.

Theorems involving Partitions

Theorem: The number of partitions d_{n} of n into distinct, odd parts, is equal to the number of selfconjugate partitions of n.
Investigation: Does this make sense? For $n=6$, d_{6} :

Proof 1: (Gen. func.)

Proof 2: (Bijective)

Standard Young Tableaux

The following material is very near to some current lines of research in algebra and combinatorics.

Definitions:

A Young diagram is a representation of a partition using left-justified boxes called cells.
A Young tableau is a placement of positive integers into the boxes of a Young diagram.
A standard Young tableau is a Young tableau where the integers are 1 through n, and both the rows and the columns are increasing.
The hook length $h(i, j)$ of a cell (i, j) is the number of cells in the "hook" to the left and down.

Young tableau

std. Young tableau cell hook lengths

Q:How many SYT are there of shape $\lambda \vdash n$?
A:
n !
$\overline{\Pi_{(i, j) \in \lambda} h(i, j)}$

