A Taste of Generating Functions

Example: Find the sequence $\left\{a_{n}\right\}_{n \geq 0}$ that satisfies $a_{0}=0$ and the recurrence $a_{n+1}=2 a_{n}+1$ for $n \geq 0$.

We will use generating functions to determine a formula for a_{n}. Define $A(x)=\sum_{n \geq 0} a_{n} x^{n}$.
Step 1: Multiply both sides of the recurrence by x^{n} and sum over all n :

$$
\sum_{n \geq 0} a_{n+1} x^{n}=\sum_{n \geq 0}\left(2 a_{n}+1\right) x^{n}
$$

Step 2: Massage the sums to find copies of $A(x)$.
On the LHS: need power of x to equal term index; On the RHS: separate into pieces with, w/o a_{n}.

$$
\frac{1}{x} \sum_{n \geq 0} a_{n+1} x^{n+1}=\sum_{n \geq 0} 2 a_{n} x^{n}+\sum_{n \geq 0} x^{n}
$$

Therefore,

Important G.F. Manipulations

Key series:

$$
\begin{array}{cr}
\frac{1}{1-x}=\sum_{n \geq 0} x^{n} & \frac{1}{(1-x)^{k+1}}=\sum_{n \geq 0}\binom{n+k}{n} x^{n} \\
e^{x}=\sum_{n \geq 0} \frac{x^{n}}{n!} & (1+x)^{\alpha}=\sum_{k \geq 0}\binom{\alpha}{k} x^{k}
\end{array}
$$

Manipulations on $A(x)=\sum_{n \geq 0} a_{n} x^{n}$: $\left[x^{n}\right]\left(x^{b} A(x)\right)=\left[x^{n+b}\right](A(x))$
$\sum_{n \geq 1} a_{n-1} x^{n}=$
$\sum_{n>0} a_{n+1} x^{n}=$
$\sum_{n \geq 0} n a_{n} x^{n}=$
$\sum_{n \geq 0} p(n) a_{n} x^{n}=p\left(x \frac{d}{d x}\right)(A(x))$
Example: Find $\sum_{n \geq 0} \frac{n^{2}+4 n+5}{n!}$

Additional G.F. Manipulations

Let $A(x)=\sum_{n \geq 0} a_{n} x^{n}$ and $B(x)=\sum_{n \geq 0} b_{n} x^{n}$.
Then what is the coefficient of x^{n} of $A(x) B(x)$?
Upon expanding the product, multiplying a term $a_{k} x^{k}$ in A and a term $b_{l} x^{l}$ in B only contribute to the coefficient of x^{n} if

Therefore, $A(x) B(x)=\sum_{n \geq 0}$
One interpretation of this theorem:
If a_{n} counts all sets of size n of type " S ", and b_{n} counts all sets of size n of type "丁", then $\left[x^{n}\right](A(x) B(x))$ counts all pairs of sets (S, T) where the total number of elements in both sets is n.

A special case: $(A(x))^{2}=\sum_{n \geq 0}$
Similar to above, the coefficient of x^{n} of $(A(x))^{k}$ is: $\left[x^{n}\right]\left((A(x))^{k}\right)=\sum_{n_{1}+n_{2}+\cdots+n_{k}=n} a_{n_{1}} a_{n_{2}} \cdots a_{n_{k}}$

Rolling Dice

Example: (a) When two standard six-sided dice are rolled, what is the distribution of the sums?
(b) Is it possible to create two six-sided dice with non-standard labelings such that when we roll them we recover the same distribution of sums?

Define $D(x)$ to be a generating function that represents the roll of one die. In other words, $\left[x^{n}\right](D(x))=$ the number of ways in which n arises. So, $D(x)=$

Notice $D(1)=6$
Q: What does $\left[x^{n}\right]\left(D(x)^{2}\right)$ represent?
A: The number of ways that a total of n dots can appear on die 1 and die 2 . So the answer to part (a) is $D(x)^{2}=$

Part (b): The distribution of the sums is $D(x)^{2}$, so this question asks us to:

Fruit Baskets

Example: Use a generating function method to determine in how many ways we can create a fruit basket with n pieces of fruit, where we have an infinite supply of apples and bananas, with the added constraints:

- The number of apples is even.
- The number of bananas is a multiple of five.
- The number of oranges is at most four.
- The number of pears is zero or one.

STRATEGY: Write down a power series for each piece of fruit to represent the possible numbers of fruit we can put into the basket.

