
Integer Sequences
a0, a1, a2, . . . , an, . . .

Integer sequences often arise as a compilation of

experimental combinatorial data. We will develop

tools to allow us to find a formula for the nth term.

an = f(n)

In general, this is a hard. Let’s start off easy:

arithmetic: a0, a0 + q, a0 + 2q, a0 + 3q, . . .

geometric: a0, qa0 , q2a0 , q3a0 , . . .

Example: Let hn be the number of regions created

by n mutually overlapping circles.

We can calculate the first few terms.

We can make a conjecture for the formula.

(Or a relation that successive terms satisfy.)
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Integer Sequences

These methods may be considered “experimental”

in that we are collecting data. However,

the underlying answers will always be exact.

A sequence {hn}n≥0 satisfies a recurrence relation

of order k if there are quantities bn and a1, . . . , ak

with ak "= 0 (that may depend on n) such that

hn = a1hn−1+a2hn−2+· · ·+akhn−k+bn (for n ≥ k)

A sequence is completely defined by a recurrence

relation of order k along with k initial conditions.

Example: Starbucks is moving into a new town.

The first month is spent hiring and training people.

Starting the second month and then every month

thereafter, a manager is created that opens a new

Starbucks the following month. Determine how

many branches there will be after n months.
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§7.1 Fibonacci Numbers
f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13
1 1 2 3 5 8 13 21 34 55 89 144 233

One tool: Online Encyclopedia of Integer Sequences

http://www.research.att.com/∼njas/sequences/

The Fibonacci numbers satisfy fn = fn−1 + fn−2

with initial conditions f0 = 1 and f1 = 1.

Note: This is NOT a formula!

Identities involving a sequence satisfying a

recurrence are most easily proven using induction.

Example: fn is even iff n is divisible by 3.

There is a combinatorial interpretation of the Fi-

bonacci numbers in terms of square-domino tilings:

Let bn be the number of ways to tile an n×1 board

using squares and dominoes. Calculate a few terms:

We can guess:
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§7.1 Fibonacci Numbers

Two sequences are equal if they satisfy the same

recurrence and have the same initial conditions.

We see that b0 = and b1 =

Why is bn = bn−1 + bn−2?

We can use these “offset” Fibonacci numbers to

prove Fibonacci identities combinatorially.

Theorem: b2n = b2n+b2n−1

[

Or: f2n+1=f2
n+1+f2

n.
]

For more combinatorial proofs involving the Fi-

bonacci sequence and related numbers, check out:

Proofs that Really Count: The Art of Combina-

torial Proof, by Benjamin and Quinn.
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Generating Functions

“A generating function is a clothesline on which

we hang up a sequence of numbers for display.”

— Generatingfunctionology, H. S. Wilf

For any sequence {an}n≥0 = a0, a1, a2, a3, . . .,

its generating function is the formal power series

A(x) = a0 + a1x + a2x2 + a3x3 + · · · =
∑

n≥0

anxn.

Example: Let fn be the Fibonacci numbers. Then

F(x) =
∑

n≥0

fnxn = 0+1x+1x2+2x3+3x4+5x5+· · · .

We will see that we can simplify this expression

greatly. In fact, F(x) =
x

1 − x − x2
.

Conversely, we would say that fn is the coefficient

of xn in x
1−x−x2. We write this as fn = [xn]

(

x
1−x−x2

)

.

Example: Let A(x) = 1/(1+x). We recognize this

as the geometric series 1/(1 − (−x)); therefore,

A(x) = 1−x+x2−x3+ · · · and [xn]A(x) = (−1)n.
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Generating Functions

We will use generating functions to:

• Find an exact formula for a sequence.

• Prove identities involving a sequence.

• Understand partitions of an integer.

Others use generating functions to:

• Understand the asymptotics of a sequence.

• Find averages and statistical properties.

• Understand *something* about a sequence.

—Worksheet—
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