Integer Sequences

 $a_0, a_1, a_2, \ldots, a_n, \ldots$

Integer sequences often arise as a compilation of experimental combinatorial data. We will develop tools to allow us to find a formula for the n^{th} term.

$$a_n = f(n)$$

In general, this is a hard. Let's start off easy:

arithmetic:
$$a_0, a_0 + q, a_0 + 2q, a_0 + 3q, \dots$$

geometric: $a_0, qa_0, q^2a_0, q^3a_0, \dots$

Example: Let h_n be the number of regions created by n mutually overlapping circles. We can calculate the first few terms.

We can make a conjecture for the formula.

(Or a relation that successive terms satisfy.)

Integer Sequences

These methods may be considered "experimental" in that we are collecting data. However, the underlying answers will always be exact.

A sequence $\{h_n\}_{n\geq 0}$ satisfies a *recurrence relation* of order k if there are quantities b_n and a_1, \ldots, a_k with $a_k \neq 0$ (that may depend on n) such that

 $h_n = a_1 h_{n-1} + a_2 h_{n-2} + \dots + a_k h_{n-k} + b_n$ (for $n \ge k$)

A sequence is completely defined by a recurrence relation of order k along with k initial conditions.

Example: Starbucks is moving into a new town. The first month is spent hiring and training people. Starting the second month and then every month thereafter, a manager is created that opens a new Starbucks the following month. Determine how many branches there will be after n months.

§7.1 Fibonacci Numbers

 f_1 f_2 f_3 f_4 f_5 f_6 f_7 f_8 f_9 f_{10} f_{11} f_{12} f_{13} 1 1 2 3 5 8 13 21 34 55 89 144 233 One tool: Online Encyclopedia of Integer Sequences http://www.research.att.com/~njas/sequences/

The Fibonacci numbers satisfy $f_n = f_{n-1} + f_{n-2}$ with initial conditions $f_0 = 1$ and $f_1 = 1$. **Note:** This is NOT a formula!

Identities involving a sequence satisfying a recurrence are most easily proven using induction. *Example:* f_n is even iff n is divisible by 3.

There is a combinatorial interpretation of the Fibonacci numbers in terms of square-domino tilings:

Let b_n be the number of ways to tile an $n \times 1$ board using squares and dominoes. Calculate a few terms:

We can guess:

§7.1 Fibonacci Numbers

Two sequences are equal if they satisfy the same recurrence and have the same initial conditions. We see that $b_0 =$ and $b_1 =$ Why is $b_n = b_{n-1} + b_{n-2}$?

We can use these "offset" Fibonacci numbers to prove Fibonacci identities combinatorially.

Theorem:
$$b_{2n} = b_n^2 + b_{n-1}^2 \left[\text{Or: } f_{2n+1} = f_{n+1}^2 + f_n^2 \right]$$

For more combinatorial proofs involving the Fibonacci sequence and related numbers, check out: *Proofs that Really Count: The Art of Combinatorial Proof*, by Benjamin and Quinn.

Generating Functions

"A generating function is a clothesline on which we hang up a sequence of numbers for display." — Generatingfunctionology, H. S. Wilf

For any sequence $\{a_n\}_{n\geq 0} = a_0, a_1, a_2, a_3, \ldots$, its *generating function* is the formal power series

$$A(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + \dots = \sum_{n \ge 0} a_n x^n.$$

Example: Let f_n be the Fibonacci numbers. Then $F(x) = \sum_{n \ge 0} f_n x^n = 0 + 1x + 1x^2 + 2x^3 + 3x^4 + 5x^5 + \cdots$. We will see that we can simplify this expression greatly. In fact, $F(x) = \frac{x}{1 - x - x^2}$.

Conversely, we would say that f_n is the coefficient of x^n in $\frac{x}{1-x-x^2}$. We write this as $f_n = [x^n] \left(\frac{x}{1-x-x^2}\right)$.

Example: Let A(x) = 1/(1+x). We recognize this as the geometric series 1/(1-(-x)); therefore, $A(x) = 1 - x + x^2 - x^3 + \cdots$ and $[x^n]A(x) = (-1)^n$.

Generating Functions

We will use generating functions to:

- Find an exact formula for a sequence.
- Prove identities involving a sequence.
- Understand partitions of an integer.

Others use generating functions to:

- Understand the asymptotics of a sequence.
- Find averages and statistical properties.
- Understand *something* about a sequence.

-Worksheet-