Integer Sequences

$$
a_{0}, a_{1}, a_{2}, \ldots, a_{n}, \ldots
$$

Integer sequences often arise as a compilation of experimental combinatorial data. We will develop tools to allow us to find a formula for the $n^{\text {th }}$ term.

$$
a_{n}=f(n)
$$

In general, this is a hard. Let's start off easy:
arithmetic: $a_{0}, a_{0}+q, a_{0}+2 q, a_{0}+3 q, \ldots$ geometric: $a_{0}, q a_{0}, q^{2} a_{0}, q^{3} a_{0}, \ldots$

Example: Let h_{n} be the number of regions created by n mutually overlapping circles.
We can calculate the first few terms.

We can make a conjecture for the formula.
(Or a relation that successive terms satisfy.)

Integer Sequences

These methods may be considered "experimental" in that we are collecting data. However, the underlying answers will always be exact.

A sequence $\left\{h_{n}\right\}_{n \geq 0}$ satisfies a recurrence relation of order k if there are quantities b_{n} and a_{1}, \ldots, a_{k} with $a_{k} \neq 0$ (that may depend on n) such that
$h_{n}=a_{1} h_{n-1}+a_{2} h_{n-2}+\cdots+a_{k} h_{n-k}+b_{n}($ for $n \geq k)$
A sequence is completely defined by a recurrence relation of order k along with k initial conditions.

Example: Starbucks is moving into a new town. The first month is spent hiring and training people. Starting the second month and then every month thereafter, a manager is created that opens a new Starbucks the following month. Determine how many branches there will be after n months.

§7.1 Fibonacci Numbers

$\begin{array}{ccccccccccccc}f_{1} & f_{2} & f_{3} & f_{4} & f_{5} & f_{6} & f_{7} & f_{8} & f_{9} & f_{10} & f_{11} & f_{12} & f_{13} \\ 1 & 1 & 2 & 3 & 5 & 8 & 13 & 21 & 34 & 55 & 89 & 144 & 233\end{array}$
One tool: Online Encyclopedia of Integer Sequences http://www.research.att.com/~njas/sequences/

The Fibonacci numbers satisfy $f_{n}=f_{n-1}+f_{n-2}$ with initial conditions $f_{0}=1$ and $f_{1}=1$.
Note: This is NOT a formula!
Identities involving a sequence satisfying a recurrence are most easily proven using induction. Example: f_{n} is even iff n is divisible by 3.

There is a combinatorial interpretation of the Fibonacci numbers in terms of square-domino tilings:

Let b_{n} be the number of ways to tile an $n \times 1$ board using squares and dominoes. Calculate a few terms:

We can guess:

§7.1 Fibonacci Numbers

Two sequences are equal if they satisfy the same recurrence and have the same initial conditions. We see that $b_{0}=$ and $b_{1}=$
Why is $b_{n}=b_{n-1}+b_{n-2}$?

We can use these "offset" Fibonacci numbers to prove Fibonacci identities combinatorially.

Theorem: $b_{2 n}=b_{n}^{2}+b_{n-1}^{2}\left[\right.$ Or: $f_{2 n+1}=f_{n+1}^{2}+f_{n}^{2}$.]

For more combinatorial proofs involving the Fibonacci sequence and related numbers, check out: Proofs that Really Count: The Art of Combinatorial Proof, by Benjamin and Quinn.

Generating Functions

"A generating function is a clothesline on which we hang up a sequence of numbers for display."

- Generatingfunctionology, H. S. Wilf

For any sequence $\left\{a_{n}\right\}_{n \geq 0}=a_{0}, a_{1}, a_{2}, a_{3}, \ldots$, its generating function is the formal power series

$$
A(x)=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\cdots=\sum_{n \geq 0} a_{n} x^{n} .
$$

Example: Let f_{n} be the Fibonacci numbers. Then $F(x)=\sum_{n \geq 0} f_{n} x^{n}=0+1 x+1 x^{2}+2 x^{3}+3 x^{4}+5 x^{5}+\cdots$. We will see that we can simplify this expression greatly. In fact, $F(x)=\frac{x}{1-x-x^{2}}$.
Conversely, we would say that f_{n} is the coefficient of x^{n} in $\frac{x}{1-x-x^{2}}$. We write this as $f_{n}=\left[x^{n}\right]\left(\frac{x}{1-x-x^{2}}\right)$.

Example: Let $A(x)=1 /(1+x)$. We recognize this as the geometric series $1 /(1-(-x))$; therefore, $A(x)=1-x+x^{2}-x^{3}+\cdots$ and $\left[x^{n}\right] A(x)=(-1)^{n}$.

Generating Functions

We will use generating functions to:

- Find an exact formula for a sequence.
- Prove identities involving a sequence.
- Understand partitions of an integer.

Others use generating functions to:

- Understand the asymptotics of a sequence.
- Find averages and statistical properties.
- Understand ${ }^{*}$ something* about a sequence.
—Worksheet-

