$\S6.1$ Inclusion-Exclusion

When $A = A_1 \cup \cdots \cup A_k$ and the A_i are pairwise disjoint, we know that $|A| = |A_1| + \cdots + |A_k|$.

When $A = A_1 \cup \cdots \cup A_k$ and the subsets A_i are NOT pairwise disjoint, we must apply the principle of *inclusion-exclusion* in order to determine |A|.

§6.1 mmm...PIE

Theorem 6.1.2: $|A_1 \cup \cdots \cup A_m| = \sum |A_i| - \sum |A_i \cap A_j|$ + $\sum |A_i \cap A_j \cap A_k| - \cdots + (-1)^{m+1} |A_1 \cap \cdots \cap A_m|$ Theorem 6.1.1: $|\overline{A_1} \cup \cdots \cup \overline{A_m}| = |S| - \sum |A_i| + \sum |A_i \cap A_j| - \sum |A_i \cap A_j \cap A_k| + \cdots + (-1)^m |A_1 \cap \cdots \cap A_m|$

The key to using the principle of inclusion-exclusion is determining sets A_i that are easy to count.

Example: Find the number of integers between 1 and 1000 that are not divisible by 5, 6, or 8. Solution: Let $S = \{n \in \mathbb{Z} \text{ s.t. } 1 \le n \le 1000\}$ Let $A_1 \subset S$ be the multiples of 5, $A_2 \subset S$ be the multiples of 6, and $A_3 \subset S$ be the multiples of 8. Then, in words, $A_1 \cap A_2$ contains $A_1 \cap A_3$ $A_2 \cap A_3$ and $A_1 \cap A_2 \cap A_3$ contains $|A_1| = |A_2| = |A_3| =$ $|A_1 \cap A_2| = |A_1 \cap A_3| =$ $|A_2 \cap A_3| = |A_1 \cap A_2 \cap A_3| =$ So $|\overline{A_1} \cup \overline{A_2} \cup \overline{A_3}| =$

Example: Find how many permutations of "MATHISFUN" contains none of the words "MATH", "IS", or "FUN" as subwords.

§6.2 Combinations with Repetitions

Counting *r*-combinations of $\{1 \cdot a_1, 1 \cdot a_2, \cdots, 1 \cdot a_k\}$ Counting *r*-combinations of $\{r \cdot a_1, r \cdot a_2, \cdots, r \cdot a_k\}$

Now we want to be able to count r-combinations of an arbitrary multiset. It's as easy as PIE.

Example: Determine the number of 10-combinations of the multiset $T = \{3 \cdot a, 4 \cdot b, 5 \cdot c\}$.

Game plan: Let *S* be the set of 10-combinations of $\{\infty \cdot a, \infty \cdot b, \infty \cdot c\}$. Use inclusion/exclusion to find $|T| = |S - (A_1 \cup \cdots \cup A_k)|$ for the right sets A_i .

In choosing the A_i , we want 10-combinations that <u>violate</u> the conditions of T: Define A_1 to be

Example: Find the number of integral solutions of $x_1 + x_2 + x_3 + x_4 = 16$ subject to $1 \le x_1 \le 5$, $-2 \le x_2 \le 4$, $0 \le x_3 \le 5$, and $3 \le x_4 \le 9$.

§6.3 Derangements

At a party, 10 gentlemen check their hats. They "have a good time", and are each handed a hat on the way out. In how many ways can the hats be returned so that no one is returned his own hat?

This is a *derangement* of ten objects.

Q: How many words (permutations) are there of [n] such that the first letter is not 1, the second is not 2, and so on up to the last letter is not n?

A: Call this number D_n ; we'll find a formula using inclusion/exclusion:

Let S be the set of all ways we can return the hats. Now let A_1 be the ways in which "1" gets his hat, let A_2 be the ways in which "2" gets his hat, etc. and let A_n be the ways in which "n" gets his hat. Then $D_n = |S| - |A_1 \cup \cdots \cup A_n|$. $|S| = |A_i| =$

When intersecting k sets, $|A_{i_1} \cap \cdots \cap A_{i_k}| =$ The number of such intersections is

Therefore, $D_n =$

§6.3 More derangements

$$D_n = n! - {n \choose 1} (n-1)! + {n \choose 2} (n-2)! - \dots + (-1)^n {n \choose n} 0!$$

= $n! - \frac{n!}{1!} + \frac{n!}{2!} - \dots + (-1)^n \frac{n!}{n!}$
= $n! \Big[1 - \frac{1}{1!} + \frac{1}{2!} - \frac{1}{3!} + \dots + (-1)^n \frac{1}{n!} \Big]$

Taylor series expansion of e^x : $e^x = 1 + \frac{x}{1!} + \frac{x}{2!} - \frac{x}{3!} + \cdots$ Therefore, $\approx \left[1 - \frac{1}{1!} + \frac{1}{2!} - \frac{1}{3!} + \cdots + (-1)^n \frac{1}{n!}\right]$

Q: If the hats are passed back randomly, what is the probability that no one gets his hat back?

We can prove identities involving D_n combinatorially.

$$D_n = (n-1)(D_{n-2} + D_{n-1})$$

§6.4 Permutations with Forbidden Positions

We can think of *derangements* as permutations of [n] with the following restrictions:

in position 1, '1' can not appear. in position 2, '2' can not appear. in position n, 'n' can not appear.

A natural generalization is to find permutations of [n] with the restrictions:

- in position 1, none of $X_1 \subset [n]$ may appear.
- in position 2, none of $X_2 \subset [n]$ may appear.
- in position n, none of $X_n \subset [n]$ may appear.

We appeal to the framework of non-attacking rooks. For example, when n = 4, set up a 4×4 board:

There is a bijection between permutations of [n]and placements of n non-attacking rooks on an $n \times n$ board.

§6.4 Forbidden Positions

 \leftrightarrow

perm's satisfying forbidden positions

non-attacking rook placements w/ position restrictions

Example: Count and enumerate all permutations for n = 4 subject to the forbidden positions:

$$X_1 = \{1, 2\}, X_2 = \{2, 3\}, X_3 = \{3, 4\}, X_4 = \{1, 4\}.$$

\times	\times		
	\times	\times	
		Х	\times
\times			\times

§6.4 Forbidden Positions

For few forbidden positions, use Inclusion/Exclusion. Let I be the set of forbidden positions (squares).

For all $i \in I$, let A_i be the number of rook placements with one rook in forbidden position i.

Calculate $|A_i| =$

The ingenious part comes in when we have to calculate the size of the intersections:

In words, $A_i \cap A_j$ is

Therefore, $|A_i \cap A_j| =$

Similarly, $|A_i \cap A_j \cap A_k| =$

So, the number of permutations that respect the forbidden positions is

 $|S| - \sum |A_i| + \sum |A_i \cap A_j| - \sum |A_i \cap A_j \cap A_k| + \dots =$

Example: Find the number of permutations of [5] satisfying these forbidden positions:

	X			
\times		\times		
	\times			
			Х	\times
			\times	