
§6.1 Inclusion-Exclusion

When A = A1 ∪ · · · ∪ Ak and the Ai are pairwise

disjoint, we know that |A| = |A1| + · · · + |Ak|.

When A = A1 ∪ · · · ∪ Ak and the subsets Ai are

NOT pairwise disjoint, we must apply the principle

of inclusion-exclusion in order to determine |A|.

k = 2 k = 3

|A| = |A1| + |A2|− |A| = |A1| + |A2| + |A3|

|S − A| = |S − A| =
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§6.1 mmm. . .PIE

Theorem 6.1.2: |A1∪· · ·∪Am| = ∑ |Ai|−
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Theorem 6.1.1: |A1 ∪ · · · ∪ Am| = |S| − ∑ |Ai|+
∑ |Ai∩Aj|−

∑ |Ai∩Aj∩Ak|+· · ·+(−1)m|A1∩· · ·∩Am|

The key to using the principle of inclusion-exclusion
is determining sets Ai that are easy to count.

Example: Find the number of integers between 1
and 1000 that are not divisible by 5, 6, or 8.

Solution: Let S = {n ∈ Z s.t. 1 ≤ n ≤ 1000}
Let A1 ⊂ S be the multiples of 5,
A2 ⊂ S be the multiples of 6, and
A3 ⊂ S be the multiples of 8.

Then, in words, A1 ∩ A2 contains
A1 ∩ A3 A2 ∩ A3
and A1 ∩ A2 ∩ A3 contains

|A1| = |A2| = |A3| =
|A1 ∩ A2| = |A1 ∩ A3| =
|A2 ∩ A3| = |A1 ∩ A2 ∩ A3| =
So |A1 ∪ A2 ∪ A3| =
Example: Find how many permutations of
“MATHISFUN” contains none of the words
“MATH”, “IS”, or “FUN” as subwords.
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§6.2 Combinations with Repetitions

Counting r-combinations of {1 ·a1,1 ·a2, · · · ,1 ·ak}
Counting r-combinations of {r · a1, r · a2, · · · , r · ak}

Now we want to be able to count r-combinations
of an arbitrary multiset. It’s as easy as PIE.

Example: Determine the number of 10-combinations
of the multiset T = {3 · a,4 · b,5 · c}.
Game plan: Let S be the set of 10-combinations
of {∞ · a,∞ · b,∞ · c}. Use inclusion/exclusion to
find |T | = |S − (A1∪ · · ·∪Ak)| for the right sets Ai.

In choosing the Ai, we want 10-combinations that
violate the conditions of T :
Define A1 to be
A2: A3:
Then A1 ∩ A2 are those 10-combs that
A1 ∩ A3: A2 ∩ A3: A1 ∩ A2 ∩ A3
Therefore, |A1| =
|A2| = |A3| = |A1 ∩ A2| =
|A1 ∩ A3| = |A2 ∩ A3| = |A1 ∩ A2 ∩ A3| =
|A1 ∪ A2 ∪ A3| =

Example: Find the number of integral solutions
of x1 + x2 + x3 + x4 = 16 subject to 1 ≤ x1 ≤ 5,
−2 ≤ x2 ≤ 4, 0 ≤ x3 ≤ 5, and 3 ≤ x4 ≤ 9.
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§6.3 Derangements

At a party, 10 gentlemen check their hats. They

“have a good time”, and are each handed a hat on

the way out. In how many ways can the hats be

returned so that no one is returned his own hat?

This is a derangement of ten objects.

Q: How many words (permutations) are there of

[n] such that the first letter is not 1, the second

is not 2, and so on up to the last letter is not n?

A: Call this number Dn; we’ll find a formula using

inclusion/exclusion:

Let S be the set of all ways we can return the hats.

Now let A1 be the ways in which “1” gets his hat,

let A2 be the ways in which “2” gets his hat, etc.

and let An be the ways in which “n” gets his hat.

Then Dn = |S|− |A1 ∪ · · · ∪ An|.
|S| = |Ai| =

When intersecting k sets, |Ai1 ∩ · · · ∩ Aik| =
The number of such intersections is

Therefore, Dn =
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§6.3 More derangements

Dn = n!−
(

n
1

)

(n−1)!+
(

n
2

)

(n−2)!−· · ·+(−1)n
(

n
n

)

0!

= n! − n!
1! + n!

2! − · · · + (−1)nn!
n!

= n!
[

1 − 1
1! +

1
2! −

1
3! + · · · + (−1)n 1

n!

]

Taylor series expansion of ex:

ex = 1 + x
1! +

x
2! −

x
3! + · · · . Therefore,

≈
[

1 − 1
1! +

1
2! −

1
3! + · · · + (−1)n 1

n!

]

Q: If the hats are passed back randomly, what is

the probability that no one gets his hat back?

We can prove identities involving Dn combinatorially.

Dn = (n − 1)
(

Dn−2 + Dn−1

)
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§6.4 Permutations with Forbidden
Positions

We can think of derangements as permutations of

[n] with the following restrictions:

in position 1, ‘1’ can not appear.

in position 2, ‘2’ can not appear.

in position n, ‘n’ can not appear.

A natural generalization is to find permutations of

[n] with the restrictions:

in position 1, none of X1 ⊂ [n] may appear.

in position 2, none of X2 ⊂ [n] may appear.

in position n, none of Xn ⊂ [n] may appear.

We appeal to the framework of non-attacking rooks.

For example, when n = 4, set up a 4 × 4 board:

1342

There is a bijection between permutations of [n]

and placements of n non-attacking rooks on an

n × n board.
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§6.4 Forbidden Positions

perm’s satisfying
forbidden positions

↔
non-attacking

rook placements w/
position restrictions

Example: Count and enumerate all permutations

for n = 4 subject to the forbidden positions:

X1 = {1,2}, X2 = {2,3},
X3 = {3,4}, X4 = {1,4}.
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§6.4 Forbidden Positions

For few forbidden positions, use Inclusion/Exclusion.

Let I be the set of forbidden positions (squares).

For all i ∈ I, let Ai be the number of rook place-

ments with one rook in forbidden position i.

Calculate |Ai| =
The ingenious part comes in when we have to cal-

culate the size of the intersections:

In words, Ai ∩ Aj is

Therefore, |Ai ∩ Aj| =

Similarly, |Ai ∩ Aj ∩ Ak| =

So, the number of permutations that respect the

forbidden positions is

|S|− ∑ |Ai|+
∑ |Ai ∩ Aj|−

∑ |Ai ∩ Aj ∩ Ak| + · · · =
− + − + · · ·

Example: Find the number of permutations of [5]

satisfying these forbidden positions:
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