§6.1 Inclusion-Exclusion

When $A=A_{1} \cup \cdots \cup A_{k}$ and the A_{i} are pairwise disjoint, we know that $|A|=\left|A_{1}\right|+\cdots+\left|A_{k}\right|$.

When $A=A_{1} \cup \cdots \cup A_{k}$ and the subsets A_{i} are NOT pairwise disjoint, we must apply the principle of inclusion-exclusion in order to determine $|A|$.

§6.1 mmm...PIE

Theorem 6.1.2: $\left|A_{1} \cup \cdots \cup A_{m}\right|=\sum\left|A_{i}\right|-\sum\left|A_{i} \cap A_{j}\right|$ $+\sum\left|A_{i} \cap A_{j} \cap A_{k}\right|-\cdots+(-1)^{m+1}\left|A_{1} \cap \cdots \cap A_{m}\right|$
Theorem 6.1.1: $\left|\overline{A_{1}} \cup \cdots \cup \overline{A_{m}}\right|=|S|-\sum\left|A_{i}\right|+$ $\sum\left|A_{i} \cap A_{j}\right|-\sum\left|A_{i} \cap A_{j} \cap A_{k}\right|+\cdots+(-1)^{m}\left|A_{1} \cap \cdots \cap A_{m}\right|$

The key to using the principle of inclusion-exclusion is determining sets A_{i} that are easy to count.

Example: Find the number of integers between 1 and 1000 that are not divisible by 5,6 , or 8 .
Solution: Let $S=\{n \in \mathbb{Z}$ s.t. $1 \leq n \leq 1000\}$ Let $A_{1} \subset S$ be the multiples of 5 , $A_{2} \subset S$ be the multiples of 6 , and $A_{3} \subset S$ be the multiples of 8 .
Then, in words, $A_{1} \cap A_{2}$ contains
$A_{1} \cap A_{3} \quad A_{2} \cap A_{3}$
and $A_{1} \cap A_{2} \cap A_{3}$ contains
$\left.\begin{array}{ll}\left|A_{1}\right|= & \left|A_{2}\right|= \\ \left|A_{1} \cap A_{2}\right|= & \left|A_{3}\right|= \\ \left|A_{2} \cap A_{3}\right|= & \left|A_{1} \cap A_{3}\right|= \\ \text { So }\left|\overline{A_{1}} \cup \overline{A_{2}} \cup \overline{A_{3}}\right|= & \\ l l l\end{array}\right)$
Example: Find how many permutations of "MATHISFUN" contains none of the words "MATH", "IS", or "FUN" as subwords.

§6.2 Combinations with Repetitions

Counting r-combinations of $\left\{1 \cdot a_{1}, 1 \cdot a_{2}, \cdots, 1 \cdot a_{k}\right\}$ Counting r-combinations of $\left\{r \cdot a_{1}, r \cdot a_{2}, \cdots, r \cdot a_{k}\right\}$

Now we want to be able to count r-combinations of an arbitrary multiset. It's as easy as PIE.

Example: Determine the number of 10-combinations of the multiset $T=\{3 \cdot a, 4 \cdot b, 5 \cdot c\}$.
Game plan: Let S be the set of 10-combinations of $\{\infty \cdot a, \infty \cdot b, \infty \cdot c\}$. Use inclusion/exclusion to find $|T|=\left|S-\left(A_{1} \cup \cdots \cup A_{k}\right)\right|$ for the right sets A_{i}. In choosing the A_{i}, we want 10-combinations that violate the conditions of T :
Define A_{1} to be
A_{2} : $\quad A_{3}$:
Then $A_{1} \cap A_{2}$ are those 10 -combs that
$A_{1} \cap A_{3}: \quad A_{2} \cap A_{3}: \quad A_{1} \cap A_{2} \cap A_{3}$
Therefore, $\left|A_{1}\right|=$
$\left|A_{2}\right|=\quad\left|A_{3}\right|=\quad\left|A_{1} \cap A_{2}\right|=$
$\left|A_{1} \cap A_{3}\right|=\quad\left|A_{2} \cap A_{3}\right|=\quad\left|A_{1} \cap A_{2} \cap A_{3}\right|=$
$\left|\overline{A_{1}} \cup \overline{A_{2}} \cup \overline{A_{3}}\right|=$
Example: Find the number of integral solutions of $x_{1}+x_{2}+x_{3}+x_{4}=16$ subject to $1 \leq x_{1} \leq 5$, $-2 \leq x_{2} \leq 4,0 \leq x_{3} \leq 5$, and $3 \leq x_{4} \leq 9$.

§6.3 Derangements

At a party, 10 gentlemen check their hats. They "have a good time", and are each handed a hat on the way out. In how many ways can the hats be returned so that no one is returned his own hat?

This is a derangement of ten objects.
Q: How many words (permutations) are there of [n] such that the first letter is not 1 , the second is not 2 , and so on up to the last letter is not n ?

A: Call this number D_{n}; we'll find a formula using inclusion/exclusion:
Let S be the set of all ways we can return the hats. Now let A_{1} be the ways in which " 1 " gets his hat, let A_{2} be the ways in which " 2 " gets his hat, etc. and let A_{n} be the ways in which " n " gets his hat. Then $D_{n}=|S|-\left|A_{1} \cup \cdots \cup A_{n}\right|$. $|S|=\quad\left|A_{i}\right|=$

When intersecting k sets, $\left|A_{i_{1}} \cap \cdots \cap A_{i_{k}}\right|=$ The number of such intersections is

Therefore, $D_{n}=$

§6.3 More derangements

$$
\begin{aligned}
& D_{n}=n!-\binom{n}{1}(n-1)!+\binom{n}{2}(n-2)!-\cdots+(-1)^{n}\binom{n}{n} \text { ! } \\
& =n!-\quad \frac{n!}{1!} \quad+\frac{n!}{2!} \quad-\cdots+(-1)^{n n!} \frac{1}{n!} \\
& =n!\left[1-\frac{1}{1!}+\frac{1}{2!}-\frac{1}{3!}+\cdots+(-1)^{n} \frac{1}{n!}\right]
\end{aligned}
$$

Taylor series expansion of e^{x} :
$e^{x}=1+\frac{x}{1!}+\frac{x}{2!}-\frac{x}{3!}+\cdots$. Therefore,
$\approx\left[1-\frac{1}{1!}+\frac{1}{2!}-\frac{1}{3!}+\cdots+(-1)^{n} \frac{1}{n!}\right]$
Q: If the hats are passed back randomly, what is the probability that no one gets his hat back?

We can prove identities involving D_{n} combinatorially.

$$
D_{n}=(n-1)\left(D_{n-2}+D_{n-1}\right)
$$

§6.4 Permutations with Forbidden Positions

We can think of derangements as permutations of [n] with the following restrictions:
in position 1, '1' can not appear.
in position 2, ' 2 ' can not appear.
in position n, ' n ' can not appear.
A natural generalization is to find permutations of [n] with the restrictions:
in position 1, none of $X_{1} \subset[n]$ may appear.
in position 2, none of $X_{2} \subset[n]$ may appear.
in position n , none of $X_{n} \subset[n]$ may appear.
We appeal to the framework of non-attacking rooks. For example, when $n=4$, set up a 4×4 board:

1342

There is a bijection between permutations of $[n$] and placements of n non-attacking rooks on an $n \times n$ board.

§6.4 Forbidden Positions

perm's satisfying forbidden positions
non-attacking
$\leftrightarrow \quad$ rook placements w/ position restrictions

Example: Count and enumerate all permutations for $n=4$ subject to the forbidden positions:

$$
\begin{aligned}
& X_{1}=\{1,2\}, X_{2}=\{2,3\}, \\
& X_{3}=\{3,4\}, X_{4}=\{1,4\} .
\end{aligned}
$$

X	X		
	X	X	
		X	X
X			X

X	X		
	X	X	
		X	X
X			X

X	X		
	X	X	
		X	X
X			X

§6.4 Forbidden Positions

For few forbidden positions, use Inclusion/Exclusion. Let I be the set of forbidden positions (squares).

For all $i \in I$, let A_{i} be the number of rook placements with one rook in forbidden position i.
Calculate $\left|A_{i}\right|=$
The ingenious part comes in when we have to calculate the size of the intersections:
In words, $A_{i} \cap A_{j}$ is
Therefore, $\left|A_{i} \cap A_{j}\right|=$
Similarly, $\left|A_{i} \cap A_{j} \cap A_{k}\right|=$
So, the number of permutations that respect the forbidden positions is
$|S|-\sum\left|A_{i}\right|+\sum\left|A_{i} \cap A_{j}\right|-\sum\left|A_{i} \cap A_{j} \cap A_{k}\right|+\cdots=$ $__{-}-\ldots+\ldots-__{-}+\cdots$

Example: Find the number of permutations of [5] satisfying these forbidden positions:

x^{x}		
x^{x}	x	
		$x \times$
		x

