§5.1 Pascal's Formula

We saw that $\binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1}$. This, with initial conditions allow us to calculate $\binom{n}{k}$ for all n and k in a recursive manner. $\binom{n}{0} = 1$ and $\binom{n}{n} = 1$ for all n.

$nackslash^k$	0	1	2	3	4	5	6	7
0	1							
1	1	1						
2	1	2	1					
3	1	3	3	1				
4	1	4	6	4	1			
5	1	5	10	10	5	1		
6	1	6	15	20	15	6	1	
7	1							1

Many fun sequences appear in Pascal's triangle:

	Name	ID
$\binom{n}{1}$	$(a_n = n)$	A000027
$\binom{n}{2}$	triangular	A000217
$\binom{n}{3}$	tetrahedral	A000292
$\binom{2n}{n}$	cent. binom.	A000984
	$\begin{pmatrix} 1 \\ n \\ 2 \\ n \\ 3 \end{pmatrix}$	$ \begin{pmatrix} n \\ 1 \\ n \\ 2 \end{pmatrix} (a_n = n) \\ triangular \\ \begin{pmatrix} n \\ 3 \end{pmatrix} tetrahedral $

http://www.research.att.com/~njas/sequences/

§5.1 Pascal's Formula and Induction

Pascal's formula is useful to prove identities by induction.

Example:
$$\binom{n}{0} + \binom{n}{1} + \dots + \binom{n}{n} = 2^n$$
 (*)

Proof: (by induction on n)

1. Base case: The identity holds when n = 0:

2. Inductive step: Assume that the identity holds for n = k (inductive hypothesis) and prove that the identity holds for n = k + 1.

 $\binom{k+1}{0} + \binom{k+1}{1} + \dots + \binom{k+1}{k+1} =$

By induction, the identity holds for all $n \ge 0$.

§5.2 Binomial Coefficients

Theorem 5.2.1: (The binomial theorem.) Let n be a positive integer. For all x and y, $(x+y)^n = x^n + {n \choose 1} x^{n-1} y + \dots + {n \choose n-1} x y^{n-1} + y^n.$

Let's rewrite in summation notation! Determine the generic term $[\binom{n}{k}x \ y$] and the bounds on k

$$(x+y)^n = \sum$$

That is, the entries of Pascal's triangle are the coefficients of terms in the expansion of $(x + y)^n$.

A combinatorial proof of the binomial theorem:

Q: In the expansion of $(x + y)(x + y) \cdots (x + y)$, how many of the terms are $x^{n-k}y^k$?

A: You must choose y from exactly k of the n factors. Therefore, $\binom{n}{k}$ ways.

§5.2 Binomial Identities

Special cases of the binomial theorem:

•
$$y = 1$$
: $(1+x)^n = \sum_{k=0}^n \binom{n}{k} x^k$ (*)

•
$$x = y = 1$$
: $(1+1)^n = \sum_{k=0}^n \binom{n}{k} 1^{n-k} 1^k$

That is, $\sum_{k=0}^{n} {n \choose k} = 2^{n}$

•
$$x = y = 1$$
: $(1 - 1)^n = \sum_{k=0}^n \binom{n}{k} 1^{n-k} (-1)^k$
That is, $\sum_{k=0}^n (-1)^k \binom{n}{k} =$

Manipulating the binomial theorem generates (and proves) various fun binomial identities.

• Derivative, integral of (*) w.r.t. x: (& Plug in) $n(1+x)^{n-1} = \sum_{k=0}^{n} {n \choose k} kx^{k-1}$

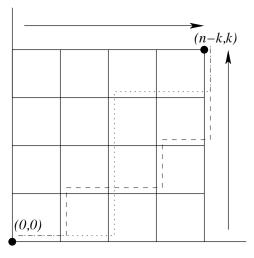
$$\frac{(1+x)^{n+1}}{n+1} = \sum_{k=0}^{n} \binom{n}{k} \frac{x^{k+1}}{k+1}$$

§5.1 Lattice Paths

We now can prove binomial identities

- analytically (factorials) inductively (Pascal's)
- combinatorially (choose k of n objects)

Another combinatorial interpretation is in terms of paths in this square lattice:



Each path will start at the origin (0,0) and step either East [a (0,1) step] or North [a (1,0) step].

Q: How many different lattice paths are there from (0,0) to (n-k,k)? [Notation: p(n,k).] A1: p(n,k) counts words with k E's and n-k N's.

A2: p(n,k) = p(n-1,k) + p(n-1,k-1) & p(n,0) = 0