§3.4-3.5 Permutations and Combinations of Multisets

A multiset M is like a set where the members may repeat. Example:

$$
\begin{aligned}
M & =\{a, a, a, b, c, c, d, d, d, d\} \\
& - \text { or we can write - } \\
M & =\{3 \cdot a, 1 \cdot b, 2 \cdot c, 4 \cdot d\}
\end{aligned}
$$

Definition: repetition numbers of the members
We allow infinite repetition, in which case we would write $\infty \cdot a$.

> We can ask
> (and we will answer):

Q: How many r-permutations, permutations, and r-combinations are there of a certain multiset?

Remember the difference:
r-permutations order r elements of M. permutations order all elements of M. r-combinations choose r elements of M.
(A multisubset, in other words!)

§3.4-3.5 Permutations and Combinations of Multisets

Example: r-permutations when each element of M has an infinite repetition number:

Example: r-combinations when each element of M has an infinite repetition number:

Example: permutations of a finite multiset M :

§3.4 Permutations of a Finite Multiset

Let M have k different types of members with finite repetition numbers n_{1} through n_{k} and let $|M|=n=n_{1}+\cdots+n_{k}$.

How many permutations of S are there?

Proof 1: Label all the balls uniquely; how many permutations exist? ___ Now ignore the labelings. How many times does the same multiset permutation appear? [What are the symmetries?]

Proof 2: How many ways are there to place the balls of type 1? __ Once they are placed, how many ways are there to place the balls of type 2 ?

§3.4 Finite-MultisetPermutation Examples

Example: How many permutations of the letters in Mississippi are there?

Example: In how many ways can we place n labeled objects into k labeled boxes, where each box B_{i} contains n_{i} objects and $n_{1}+n_{2}+\cdots+n_{k}=n$?

Example: What if all the boxes are all the same size and not labeled?

§3.4 Non-attacking Rooks

In chess, a rook is a piece that moves in a column or in a row. Two rooks are said to attack each other if they are in the same row or column.

Q: How many ways are there to place eight nonattacking rooks on an 8×8 chessboard?

A: There can not be two in the same row, so there must be one in each row. How many ways are there to place a rook in the first row? Once placed, how many ways for the second?

In all?

§3.4 More Non-attacking Rooks

Q: In how many ways can eight distinguishable rooks be placed? (Eight different colors, perhaps.)

Q: What if there are four yellow rooks, three blue rooks, and one red rook?

Q: What if we wanted to place six indistinguishable rooks on an 8×8 chessboard?

§3.5 Infinite-MultisetCombination Examples

The situation: we are looking for the number of r-combinations of a multiset

$$
M=\left\{\infty \cdot a_{1}, \infty \cdot a_{2}, \ldots, \infty \cdot a_{k}\right\}
$$

Our original interpretation is that of balls and bars:
an r-combination of M a permutation (k types of objects) of r balls and $k-1$ bars

Example: If the bagel shoppe sells plain, poppyseed, sesame, and everything bagels, in how many ways are there to make a bag of a dozen bagels?

Example: What if there must be at least one of each kind in the dozen?

§3.5 Infinite-MultisetCombination Examples

Another interpretation of r-combinations of M is non-negative integer solutions of
$x_{1}+x_{2}+x_{3}+x_{4}=r$.

Example: How many non-negative integer solutions are there of $x_{1}+x_{2}+x_{3}+x_{4}=10 ?$

Example: How many positive integer solutions are there of $x_{1}+x_{2}+x_{3}+x_{4}=10$, where $x_{4} \geq 3 ?$

