Girth and diameter

Definition: The girth of a graph G, denoted $g(G)$, is the length of the shortest cycle contained in G. If no cycles exist, $g(G)=\infty$.

Definition: Let $x, y \in V(G)$. The distance from x to y, denoted $d(x, y)$, is the length of the shortest path from x to y.

If no path exists between x and y, then $d(x, y)=\infty$.
Definition: The diameter of a graph G, denoted $\operatorname{diam}(G)$, is the maximum distance between any two vertices of G.

Cliques and independent sets

Definition: A clique K in a graph G is a subgraph of G which is isomorphic to a complete graph.

Definition: The clique number of a graph G, (denoted $\omega(G)=$ "omega") is size of the maximum clique in G.

Definition: An independent set in a graph G is a subset $X \subset V(G)$ such that no edge of G connects any two vertices of X. In other words, the induced subgraph of G on X contains no edges.

Definition: The independence number of a graph G, (denoted $\alpha(G)=$ "alpha") is the size of the maximum independence set of G.

Vertex covers

Definition: A vertex cover of a graph G is a subset $X \subset V(G)$ such that X contains (at least) one endpoint of every edge in G.

* Note: This set of vertices covers the edges of G. *

Definition: The size of the minimum vertex cover is denoted $\beta(G)$.
Theorems: Let G be a graph and suppose $X \subset V(G)$.
(1) X is a clique in $G \Longleftrightarrow X$ is an independent set in G^{c}.
(2) X is an independent set in $G \Longleftrightarrow X^{c}$ is a vertex cover in G.
(3) For all graphs $G, \alpha(G)+\beta(G)=|V(G)|$.

Recapitulation of graph statistics so far

$\delta(G)=$ minimum vertex degree
$\Delta(G)=$ maximum vertex degree
$\kappa(G)=($ vertex $)$ connectivity
$\lambda(G)=$ edge connectivity
$\mathrm{g}(G)=$ girth
$\operatorname{diam}(G)=$ diameter
$\omega(G)=$ clique number
$\alpha(G)=$ independence number
$\beta(G)=$ minimum vertex cover

