Girth and diameter

Definition: The **girth** of a graph G, denoted g(G), is the length of the shortest cycle contained in G. If no cycles exist, $g(G) = \infty$.

Definition: Let $x, y \in V(G)$. The **distance** from x to y, denoted d(x, y), is the length of the shortest path from x to y.

If no path exists between x and y, then $d(x, y) = \infty$.

Definition: The **diameter** of a graph G, denoted diam(G), is the maximum distance between any two vertices of G.

Cliques and independent sets

Definition: A clique K in a graph G is a subgraph of G which is isomorphic to a complete graph.

Definition: The **clique number** of a graph G, (denoted $\omega(G) =$ "omega") is size of the maximum clique in G.

Definition: An **independent set** in a graph G is a subset $X \subset V(G)$ such that no edge of G connects any two vertices of X. In other words, the induced subgraph of G on X contains no edges.

Definition: The **independence number** of a graph G, (denoted $\alpha(G) =$ "alpha") is the size of the maximum independence set of G.

Vertex covers

Definition: A vertex cover of a graph G is a subset $X \subset V(G)$ such that X contains (at least) one endpoint of every edge in G. \star Note: This set of vertices covers the *edges* of G. \star

Definition: The size of the minimum vertex cover is denoted $\beta(G)$.

- *Theorems:* Let G be a graph and suppose $X \subset V(G)$.
 - X is a clique in $G \iff X$ is an independent set in G^c .

2 X is an independent set in $G \iff X^c$ is a vertex cover in G.

So For all graphs G, $\alpha(G) + \beta(G) = |V(G)|$.

Recapitulation of graph statistics so far

- $\delta(G) =$ minimum vertex degree
- $\Delta(G) = maximum vertex degree$
- $\kappa(G) = (vertex)$ connectivity
- $\lambda(G) = edge connectivity$
- g(G) = girth
- diam(G) = diameter
- $\omega(G) = clique number$
- $\alpha(G) = independence number$
- $\beta(G) = minimum vertex cover$