Stable Marriages

Let's play matchmaker.

Given *n* men and *n* women, where

- ► Each man has a complete list of preferences for the women,
- ► Each woman has a complete list of preferences for the men,

Goal: Create a perfect matching of stable marriages.

That is, find a set of n couples where there are no instabilities:

Definition: An **instability** is when one man and one woman both prefer each other to their spouses.

Example: Suppose:

- Alice is married to Bob
- Clara is married to Doug
- ▶ Bob prefers Clara to Alice

If Clara prefers Bob to Doug:

If Clara prefers Doug to Bob:

The Gale–Shapley Algorithm

Theorem: (Gale, Shapley, 1962) In the above situation, there always exists a perfect matching of stable marriages.

Proof: Use the **Gale–Shapley Algorithm** to create the marriages.

- Start with no couples engaged.
- As long as at least one man is unengaged, repeat the following: Each unengaged man proposes to his next most preferred woman. Each woman then decides whether to accept or reject the proposal(s), as follows:
 - ▶ If she is not already engaged, she accepts the proposal.
 - ▶ If she is already engaged, she uses her preference list; she accepts the proposal of the man she prefers the most and rejects all others.
- \odot When all men are engaged, stop. There are n stable marriages.

<<Time for your moment of zen>>

Applying the Gale-Shapley Algorithm

Here is a complete set of preferences for 4 men and 4 women.

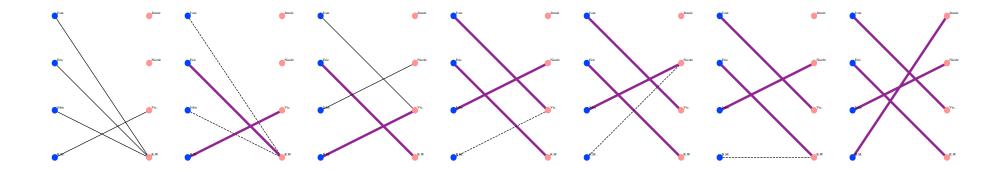
Men's Preferences

	lvan	Eric	John	R.M.
1^{st}	R.W.	R.W.	R.W.	Vic.
2^{nd}	Vic.	Jennie	Nicole	Nicole
3 rd	Jennie	Vic.	Jennie	R.W.
4 th	Nicole	Nicole	Vic.	Jennie

Women's Preferences

	Jennie	Nicole	Vic.	R.W.
1^{st}	Eric	John	John	Eric
2^{nd}	John	R.M.	Ivan	R.M.
3 rd	R.M.	Eric	R.M.	lvan
4 th	lvan	lvan	Eric	John

The Algorithm, Pictorially



R /		,		C	
I\/	lon'	· C	PrΔ	tωrc	ences
ĮV	ICII	3	ııc	1616	311CC3

Eric	John	R.M.
R.W.	R.W.	Vic.
Jennie	Nicole	Nicole
Vic.	Jennie	R.W.
Nicole	Vic.	Jennie
	R.W. Jennie Vic.	R.W. R.W. Jennie Vic. Jennie

Women's Preferences

Jennie	Nicole	Vic.	R.W.
Eric	John	John	Eric
John	R.M.	lvan	R.M.
R.M.	Eric	R.M.	Ivan
Ivan	Ivan	Eric	John

Proof of Correctness

Claim: The Gale–Shapley Algorithm gives a set of *n* stable marriages. *Proof:* We must show that the algorithm always stops, and that when it stops, the output is indeed a full set of stable marriages.

The algorithm terminates. We show that everyone is engaged:

- ▶ Once a woman has been proposed to, she stays engaged.
- ▶ So, if a woman is not engaged at the end, she had no proposal.
- ► It follows that there is also some man not engaged; however, he must have proposed to the unengaged woman during some round!

The output is a set of stable marriages. Is there an instability?

- Suppose Bob prefers Clara to his current wife.
- Bob must have proposed to Clara before his current wife.
- ► Clara must have turned down Bob, so Clara must prefer her current husband to Bob, so there is no instability.

Male-optimality

Claim: The marriages S generated by the Gale–Shapley Algorithm are male optimal. That is, given any other set of stable marriages, each man will only be paired with a woman lower on his preference list.

Proof: Suppose that during the Gale–Shapley Algorithm, there is

a man who is paired with a sub-optimal woman.

• Let M be the first man who is rejected by his optimal woman W during the algorithm.

[That is, there is some other set S' of stable marriages in which M is paired with W.]

- M is rejected because some man N proposes to W whom W prefers to M.
- Since M is the first man rejected, we know N likes W at least as much as his optimal woman.
- This, in turn, creates an instability in S' since

 $\frac{\textit{M-Optimal Pairings }(\mathcal{S}')}{\textit{Relative Pref's}}$

W prefers N to M and N prefers W to the woman he is paired with.

Last remarks

► The marriages generated by Gale—Shapley are male optimal.

- ▶ The marriages generated by Gale—Shapley are female pessimal.
- ▶ If not all rankings are made, then there may be unmatched people. For example, what if Robot Man did not like Jennie?
- The National Resident Matching Program (http://www.nrmp.org) implements this algorithm to match medical students to residency programs.