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Directed Graphs

Definition: A directed graph (or digraph) is a graph G = (V ,E ),
where each edge e = vw is directed from one vertex to another:

e : v → w or e : w → v .

Remark: The edge e : v → w is different from e′ : w → v and a
digraph including both is not considered to have multiple edges.

Definition: The in-degree of a vertex v is the
number of edges directed toward v .
Definition: The out-degree of a vertex v is the
number of edges directed away from v .

Definition: A source s is a vertex with in-degree 0.
Definition: A sink t is a vertex with out-degree 0.

Important: Any path or cycle in a digraph
must respect the direction on each edge.
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Network Flows

Definition: A network is a directed graph with additional structure:

! There are two distinguished vertices, s (a source) and t (a sink).

! Each edge e has a capacity ce . [Some sort of limit on flow.]

Idea: Graph networks represent real-world networks such as
traffic, water, communication, etc.
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Goal: Send as much “stuff” from s to t while respecting capacities.
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Network Flows

Definition: Given a network G , a flow !ϕ = {ϕe}e∈E(G) on G is an
assignment of values ϕe to every edge of G satisfying:

! 0 ≤ ϕe ≤ ce for every edge e ∈ E (G ).

! The flow respects the capacities.

!

∑

e into v

ϕe =
∑

e out of v

ϕe for every vertex v ∈ V (G ) except s or t.

! Obeys “conservation of flow” except at s and t.
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Definition: When ϕe = ce , we say that e is saturated, or at capacity.
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Maximum Flow

Theorem: Given a flow !ϕ on a network G , the net flow out of s is

equal to the net flow into t. Symbolically,
∑

e out of s

ϕe =
∑

e into t

ϕe .

Proof: Create a new network G ′ by adding to G an edge
e∞ : t → s with infinite capacity, and place flow

ϕ∞ =
∑

e out of s

ϕe

on e∞. In G ′, flow is now conserved at every vertex except possibly t.
By Kirchhoff’s Global Current Law (Theorem 6.2.2), flow must be
conserved at t as well.
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Maximum Flow

Definition: The throughput or value

of a flow !ϕ is
∑

e out of s

ϕe , denoted |!ϕ|.

Idea: The throughput is the amount
of “stuff” flowing through G .
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In our example, |!ϕ| = .

Goal: For a given network, find the
flow with the largest throughput.

This problem is called maximum flow.

MAX FLOW: maximize
over all flows !ϕ on G

|!ϕ|
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st-Cuts

A related problem in network theory has to do with st-cuts.

Definition: Let G be a network. Let X be a set of vertices
containing s and not containing t. An st-cut [X ,X c ] is the set of

edges between a vertex in X and a vertex in X c (in either direction).
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[X ,X c ] =
|[X ,X c ]| =

Definition: The capacity of an st-cut, denoted |[X ,X c ]| is the sum
of the capacities of the edges from a vertex in X to a vertex in X c .

Idea: The capacity of a cut is the limit for how much “stuff” can
go from X to X c .

# Do not subtract the capacities of the edges going the other way. #
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Max Flow / Min Cut

Goal: For a given network, find the st-cut with the smallest capacity.

This problem is called minimum cut.

MIN CUT: minimize
over all cuts [X ,Xc ] on G

|[X ,X c ]|

The problems Max Flow and Min Cut are related because for any
flow !ϕ, the net flow through the edges of any st-cut [X ,X c ] is at
most the capacity of [X ,X c ]. This proves:

Theorem: For any flow !ϕ and st-cut [X ,X c ], |!ϕ| ≤| [X ,X c ]|.

Theorem: For any maximum flow !ϕ∗ and minimum st-cut [X ∗,X ∗c ],

|!ϕ∗| ≤ |[X ∗,X ∗c ]|.

So if there exists a flow !ϕ and st-cut [X ∗,X ∗c ] where equality
holds, then !ϕ is a maximum flow and [X ∗,X ∗c ] is a minimum cut
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Max Flow / Min Cut Theorem

Theorem: (Ford, Fulkerson, 1955) In any network G , the value
of any maximum flow is equal to the capacity of any minimum cut.

Proof: Use the Ford–Fulkerson Algorithm to find a max flow.

Idea: Similar to the Hungarian Algorithm for finding a max matching,
we will augment an existing flow !ϕ.

Question: What does it look like to augment a flow?
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We can augment in the forward direction when .
We can augment in the backward direction when .

We’ll create a companion graph to keep track of augmenting paths.
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Max Flow / Min Cut Theorem

Theorem: (Ford, Fulkerson, 1955) In any network G , the value
of any maximum flow is equal to the capacity of any minimum cut.

Proof: Use the Ford–Fulkerson Algorithm, which finds a max flow.

1 Start with any flow !ϕ on G .
2 Draw the flow companion graph using the underlying graph

! If ϕe = 0, orient the edge e forward only.
! If 0 < ϕe < ce , orient the edge e both forward and backward.
! ϕe = ce , orient the edge e backward only.

3 # If there is an st-path in the flow companion graph, send as
many units of flow as possible through this path. Repeat Step 2.
# If there is no st-path in the flow companion graph, STOP.
→ The current flow is a maximum flow. ←
In addition, let X be the set of vertices reachable from s in
the flow companion graph. Then [X ,X c ] is a minimum st-cut.
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A Ford–Fulkerson Algorithm Example
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s → c → f →

e → d → t : 2 units
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A Ford–Fulkerson Algorithm Example
s → c → f → t : 1 unit

s → c → e →

a → d → t : 2 units

1
1

2
2

8
10

0
4

2
2

4
7

0
1

0
2

2
2

3
4

3
5

8
11

1
2

2
2

2
2

2
5

1
1

s

a

b

c

d

e

f

t s

a

b

c

d

e

f

t

1
1

2
2

8
10

0
4

2
2

4
7

0
1

0
2

2
2

3
4

3
5

8
11

1
2

2
2

2
2

2
5

1
1

s

a

b

c

d

e

f

t

c1!1

c2!2

c3!10

c4!4

c6!2

c7!7

c8!1

c9!2

c5!2

c10!4

c11!5

c15!11

c12!2

c13!2

c16!2

c14!5 c17!1

s

a

b

c

d

e

f

t

X = { }, [X ,X c ] = { }, and |[X ,X c ]| = .


