Directed Graphs

Definition: A directed graph (or digraph) is a graph G = (V, E), where each edge e = vw is directed from one vertex to another:

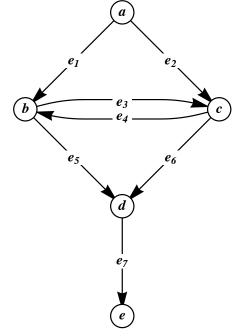
 $e: v \to w$ or $e: w \to v$.

Remark: The edge $e: v \to w$ is different from $e': w \to v$ and a digraph including both is not considered to have multiple edges.

Definition: The in-degree of a vertex v is the number of edges directed toward v.
Definition: The out-degree of a vertex v is the number of edges directed away from v.

Definition: A **source** *s* is a vertex with in-degree 0. *Definition:* A **sink** *t* is a vertex with out-degree 0.

Important: Any **path** or **cycle** in a digraph must respect the direction on each edge.

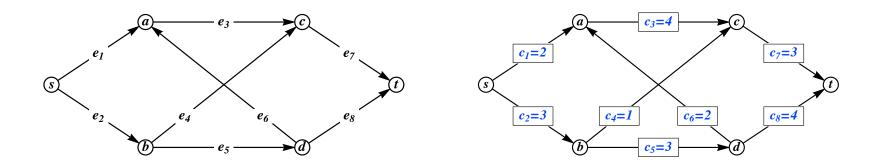


Network Flows

Definition: A **network** is a directed graph with additional structure:

- There are two distinguished vertices, s (a source) and t (a sink).
- Each edge e has a capacity c_e. [Some sort of limit on flow.]

Idea: Graph networks represent real-world networks such as traffic, water, communication, etc.



Goal: Send as much "stuff" from *s* to *t* while respecting capacities.

Network Flows

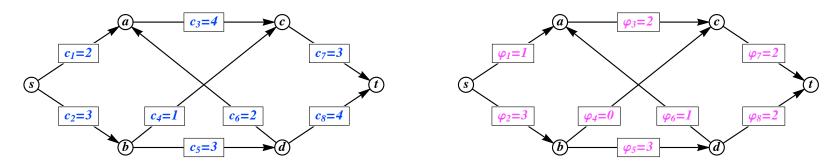
Definition: Given a network G, a flow $\vec{\varphi} = \{\varphi_e\}_{e \in E(G)}$ on G is an assignment of values φ_e to every edge of G satisfying:

►
$$0 \le \varphi_e \le c_e$$
 for every edge $e \in E(G)$.

The flow respects the capacities.

$$\blacktriangleright \sum_{e \text{ into } v} \varphi_e = \sum_{e \text{ out of } v} \varphi_e \text{ for every vertex } v \in V(G) \text{ except } s \text{ or } t.$$

Obeys "conservation of flow" except at s and t.



Definition: When $\varphi_e = c_e$, we say that e is **saturated**, or **at capacity**.

Maximum Flow

Theorem: Given a flow $\vec{\varphi}$ on a network G, the net flow out of s is equal to the net flow into t. Symbolically, $\sum_{e \text{ out of } s} \varphi_e = \sum_{e \text{ into } t} \varphi_e$.

Proof: Create a new network G' by adding to G an edge $e_{\infty}: t \rightarrow s$ with infinite capacity, and place flow

$$arphi_{\infty} = \sum_{e ext{ out of } s} arphi_e$$

on e_{∞} . In G', flow is now conserved at every vertex except possibly t. By Kirchhoff's Global Current Law (Theorem 6.2.2), flow must be conserved at t as well.

Maximum Flow

Definition: The **throughput** or **value** of a flow $\vec{\varphi}$ is $\sum_{e \text{ out of } s} \varphi_e$, denoted $|\vec{\varphi}|$.

Idea: The throughput is the amount of "stuff" flowing through *G*.

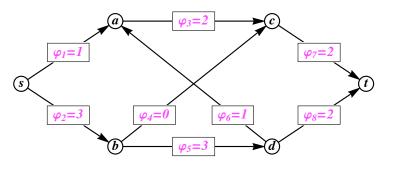
In our example, $|\vec{\varphi}| =$

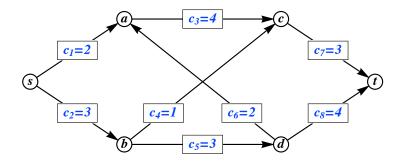
Goal: For a given network, find the flow with the largest throughput.

This problem is called **maximum flow**.

MAX FLOW:

 $\begin{array}{c} \text{maximize} & |\vec{\varphi}| \\ \text{over all flows } \vec{\varphi} \text{ on } G \end{array}$

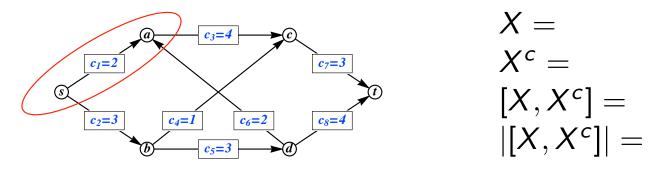




st-Cuts

A related problem in network theory has to do with *st*-cuts.

Definition: Let G be a network. Let X be a set of vertices containing s and not containing t. An st-cut $[X, X^c]$ is the set of edges between a vertex in X and a vertex in X^c (in either direction).



Definition: The **capacity** of an *st*-cut, denoted $|[X, X^c]|$ is the sum of the capacities of the edges **from** a vertex in X **to** a vertex in X^c .

Idea: The capacity of a cut is the limit for how much "stuff" can go from X to X^c .

 \star Do **not** subtract the capacities of the edges going the other way. \star

Max Flow / Min Cut

Goal: For a given network, find the *st*-cut with the smallest capacity. This problem is called **minimum cut**.

MIN CUT: minimize over all cuts $[X, X^c]$ on G $|[X, X^c]|$

The problems Max Flow and Min Cut are related because for any flow $\vec{\varphi}$, the net flow through the edges of any *st*-cut $[X, X^c]$ is at most the capacity of $[X, X^c]$. This proves:

Theorem: For any flow $\vec{\varphi}$ and *st*-cut $[X, X^c]$, $|\vec{\varphi}| \leq |[X, X^c]|$.

Theorem: For any maximum flow $\vec{\varphi}^*$ and minimum st-cut $[X^*, X^{*c}]$,

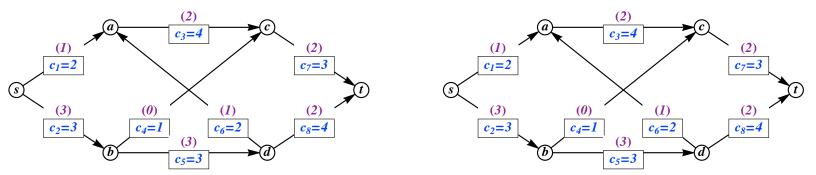
$$|\vec{\varphi}^*| \leq |[X^*, X^{*c}]|.$$

So if there exists a flow $\vec{\varphi}$ and *st*-cut $[X^*, X^{*c}]$ where equality holds, then $\vec{\varphi}$ is a maximum flow and $[X^*, X^{*c}]$ is a minimum cut

Max Flow / Min Cut Theorem

Theorem: (Ford, Fulkerson, 1955) In any network G, the value of any maximum flow is equal to the capacity of any minimum cut. **Proof:** Use the Ford–Fulkerson Algorithm to find a max flow. **Idea:** Similar to the Hungarian Algorithm for finding a max matching, we will augment an existing flow $\vec{\varphi}$.

Question: What does it look like to *augment a flow*?



We can augment in the forward direction when _____. We can augment in the backward direction when _____. We'll create a *companion graph* to keep track of augmenting paths.

Max Flow / Min Cut Theorem

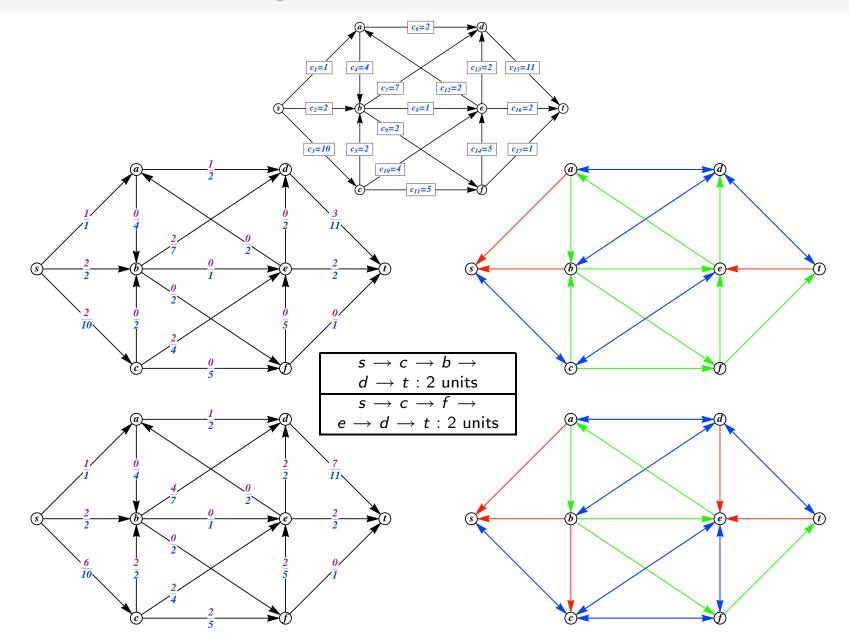
Theorem: (Ford, Fulkerson, 1955) In any network G, the value of any maximum flow is equal to the capacity of any minimum cut.

Proof: Use the **Ford–Fulkerson Algorithm**, which finds a max flow.

- Start with any flow $\vec{\varphi}$ on G.
- Oraw the flow companion graph using the underlying graph
 - If $\varphi_e = 0$, orient the edge *e* forward only.
 - ▶ If $0 < \varphi_e < c_e$, orient the edge *e* both forward and backward.
 - $\blacktriangleright \varphi_e = c_e$, orient the edge *e* backward only.
- ◆ If there is an *st*-path in the flow companion graph, send as many units of flow as possible through this path. Repeat Step 2.
 ★ If there is no *st*-path in the flow companion graph, STOP.
 → The current flow is a maximum flow. ←
 In addition, let X be the set of vertices reachable from *s* in the flow companion graph. Then [X, X^c] is a minimum *st*-cut.

Network Flow

A Ford–Fulkerson Algorithm Example



Network Flow

A Ford–Fulkerson Algorithm Example

