k-Connectivity

Definition: G is k-connected if $\bullet |V(G)| > k$, and

• Removing fewer than k vertices does not disconnect the graph.

(We will say that every graph is 0-connected.)

Definition: The **connectivity** of G (denoted $\kappa(G) =$ "kappa") is the maximum k such that G is k-connected.

(Conventions: $\kappa(\{v\}) = 0$ and $\kappa(K_n) = n - 1$.)

k-Connectivity

Definition: A separating set (or vertex cut) is a set of vertices $X \subset V(G)$ such that $G \setminus X$ is disconnected.

Therefore, $\kappa(G) = \text{size of the minimum separating set.}$

Definition: A **cut vertex** is a vertex $v \in V(G)$ such that $G \setminus v$ is disconnected.

 $\kappa(G) = 0 \iff G$ is disconnected or G is a single vertex. $\kappa(G) \ge 2 \iff G$ has no cut vertex.

k-Edge-Connectivity

Definition: G is k-edge-connected if

• Removing fewer than k edges does not disconnect the graph.

(We say that every graph is 0-edge-connected.)

Definition: The **edge connectivity** of *G* (denoted $\lambda(G) =$ "lambda") is the maximum *k* such that *G* is *k*-edge connected.

k-Edge-Connectivity

Definition: A **disconnecting set** is a set of edges $D \subset E(G)$ such that $G \setminus D$ is disconnected.

Therefore, $\lambda(G) = \text{size of the minimum disconnecting set.}$

Definition: A **bridge** is an edge $e \in E(G)$ such that $G \setminus e$ is disconnected.

 $\lambda(G) = 0 \iff G$ is disconnected or G is a single vertex. $\lambda(G) \ge 2 \iff G$ has no bridge.

Connectivity Facts

If you delete a cut vertex from a graph, ...

If you delete a bridge from a graph, ...

Theorem 2.4.1 Let G be connected. Then G is a tree \iff Every edge of G is a bridge.

Theorem 3.2.1 A regular graph of even degree has no bridge.

For all graphs G, $\kappa(G) \leq \lambda(G) \leq \delta(G)$.

Minimum vs. Minimal

Here we have hit upon an important concept— the difference between minim*um* and minim*al*.

Minimumrefers to an element of <u>absolute</u> smallest size.Minimalrefers to an element of <u>relative</u> smallest size.

Example: minimum vs. minimal disconnecting set:

Example: maximum vs. maximal connected subgraph:

Blocks

Definition: A **block** of a graph G is a maximally connected subgraph of G with no cut vertex.

The following things are true about blocks.

- \bigcirc G itself may be a block.
- Except for blocks that are edges, blocks are always 2-connected.
- Any two blocks share at most one vertex.
- A vertex shared between blocks is a cut vertex of G.
- The blocks of G partition E(G).

Characterization of 2-connectivity

(Whitney, 1932) Let G be a graph with at least 3 vertices. Then, G is 2-connected \iff for all $v, w \in V(G)$, there exist two internally disjoint v, w-paths in G.

(Menger, 1932) Let G be a graph with at least k + 1 vertices. Then,

G is *k*-connected \iff for all $v, w \in V(G)$, there exist *k* internally disjoint *v*, *w*-paths in *G*.

Definition: Let H be any subgraph of G. Then an H-path (or an ear) is a path in G that starts and ends in H. **Definition:** Given a graph G, an ear decomposition of G is a sequential construction of G starting with some cycle C, and at each step successively adding to the existing graph H some H-path.

Characterization of 2-connectivity

Let G be a graph with \geq 3 vertices. The following are equivalent:

- G is 2-connected.
- G is connected and has no cut vertex.
- G is a block.
- For all v, w ∈ V(G), there exist two internally disjoint v, w-paths in G.
- So For all $v, w \in V(G)$, there exists a cycle in G through v and w.
- G has an ear decomposition.