The Six Color Theorem

Theorem: Let G be a planar graph. There exists a proper 6 -coloring of G.

Proof: Let G be a the smallest planar graph (by number of vertices) that has no proper 6-coloring.

By Theorem 8.1.7, there exists a vertex v in G that has degree five or less. $G \backslash v$ is a planar graph smaller than G, so it has a proper 6 -coloring.

Color the vertices of $G \backslash v$ with six colors; the neighbors of v in G are colored by at most five different colors.

We can color v with a color not used to color the neighbors of v, and we have a proper 6 -coloring of G, contradicting the definition of G.

The Five Color Theorem

Theorem: Let G be a planar graph. There exists a proper 5-coloring of G.

Proof: Let G be a the smallest planar graph (by number of vertices) that has no proper 5-coloring.

By Theorem 8.1.7, there exists a vertex v in G that has degree five or less. $G \backslash v$ is a planar graph smaller than G, so it has a proper 5-coloring.

Color the vertices of $G \backslash v$ with five colors; the neighbors of v in G are colored by at most five different colors.

If they are colored with only four colors,
we can color v with a color not used to color the neighbors of v, and we have a proper 5 -coloring of G, contradicting the definition of G.

The Kempe Chains Argument

Otherwise the neighbors of v are all colored differently. We will work to modify the coloring on $G \backslash v$ so that only four colors are used.

Consider the subgraphs $H_{1,3}$ and $H_{2,4}$ of $G \backslash v$ constructed as follows: Let $V_{1,3}$ be the set of vertices in $G \backslash v$ colored with colors 1 or 3 . Let $V_{2,4}$ be the set of vertices in $G \backslash v$ colored with colors 2 or 4 . Let $H_{1,3}$ be the induced subgraph of G on $V_{1,3}$. (Define $H_{2,4}$ similarly)

The Kempe Chains Argument

Definition: A Kempe chain is a path in $G \backslash v$ between two non-consecutive neighbors of v such that the colors on the vertices of the path alternate between the colors on those two neighbors. In the example above, $3 \rightarrow 7 \rightarrow 8 \rightarrow 9 \rightarrow 10 \rightarrow 1$ is a Kempe chain: the colors alternate between red and green and 1,3 not consecutive.

Either v_{1} and v_{3} are in the same component of $H_{1,3}$ or not. If they are, there is a Kempe chain between v_{1} and v_{3}. If they are not, (say v_{1} is in component C_{1} and v_{3} is in C_{3}) then swap colors 1 and 3 in C_{1}.

The Kempe Chains Argument

Claim: This remains a proper coloring of $G \backslash v$.
Proof: We need to check that the recoloring does not have two like-colored vertices adjacent.
In C_{1}, there are only vertices of color 1 and 3 and recoloring does not change that no two adjacent vertices are colored differently.
And, by construction, no vertex adjacent to a vertex in C_{1} is colored 1 or 3 . This is true before AND after recoloring.

The Kempe Chains Argument

So either there is a Kempe chain between v_{1} and v_{3} or we can swap colors so that v 's neighbors are colored only using four colors. Similarly, either there is a Kempe chain between v_{2} and v_{4} or we can swap colors to color v 's neighbors with only four colors.

Question: Can we have both a $v_{1}-v_{3}$ and a $v_{2}-v_{4}$ Kempe chain?

There are no edge crossings in the graph drawing, so there would exist a vertex \qquad .
This can not exist, so it must be possible to swap colors and be able to place a fifth color on v, contradicting the definition of G.

Modifications of Graphs

Definition: Deletion

$G \backslash v(G$ delete $v)$: Remove v from the graph and all incident edges.
$G \backslash e(G$ delete $e)$: Remove e from the graph.

Definition: Contraction

G / e (G contract e): If $e=v w$, coalesce v and w into a super-vertex adjacent to all neighbors of v and w. [This may produce a multigraph.]

Definition: A graph H is a minor of a graph G if H can be obtained from G by a sequence of edge deletions and/or edge contractions. ["Minor" suggests smaller: H is smaller than G.]
Note: Any subgraph of G is also a minor of G.

Modifications of Graphs

Definition: A subdivision of an edge e is the replacement of e by a path of length at least two. [Like adding vertices in the middle of e.]

Definition: A subdivision of a graph H is the result of zero or more sequential subdivisions of edges of H.

Note: If G is a subdivision of H, then G is at least as large as H.
Note: If G is a subdivision of H, then H is a minor of G. (Contract any edges that had been subdivided!)

Note: The converse is not necessarily true.

Kuratowski's Theorem

Theorem: Let H be a subgraph of G. If H is nonplanar, then G is nonplanar.
Theorem: Let G be a subdivision of H. If H is nonplanar, then G is nonplanar.
Corollary: If G contains a subdivision of a nonplanar graph, then G is nonplanar.
Theorem: (Kuratowski, 1930) A graph is planar if and only if it contains no subdivision of K_{5} or $K_{3,3}$.
Theorem: (Kuratowski variant) A graph G is planar if and only if neither K_{5} nor $K_{3,3}$ is a minor of G.

Kuratowski's Theorem

- To prove that a graph G is planar, find a planar embedding of G.
- To prove that a graph G is non-planar, (a) find a subgraph of G that is isomorphic to a subdivision of K_{5} or $K_{3,3}$, or (b) successively delete and contract edges of G to show that K_{5} or $K_{3,3}$ is a minor of G.
- Practice on the Petersen graph. (Here, have some copies!)

