Maximal Planar Graphs

A graph with "too many" edges isn't planar; how many is too many?

Goal: Find a numerical characterization of "too many"

Definition: A planar graph is called **maximal planar** if adding an edge between any two non-adjacent vertices results in a non-planar graph.

Examples: Octahedron K_4 $K_5 \setminus e$

What do we notice about these graphs?

Numerical Conditions on Planar Graphs

► Every face of a maximal planar graph is a triangle!
Theorem 8.1.2: If G is maximal planar, then q = 3p - 6.
Proof: In any plane drawing of G, let p = # of vertices,
q = # of edges, and r = # of regions.
We will count the number of face-edge incidences in two ways.
From a face-centric POV, the number of face-edge incidences is

From an edge-centric POV, the number of face-edge incidences is Substitute into Euler's formula:

- Every planar graph is a subgraph of a maximal planar graph.
- Every maximal planar graph has exactly q = 3p 6 edges.

Cor 8.1.3: Every planar graph with p vertices has at most 3p - 6 edges!

Numerical Conditions on Planar Graphs

Theorem 8.1.4: The graph K_5 is not planar.

Proof:

Theorem 8.1.5^{*}: If G is planar with girth ≥ 4 , then $q \leq 2p - 4$. *Proof:* Modify the above proof—instead of 3r = 2q, we know $4r \leq 2q$. This implies that

$$2 = p - q + r \le p - q + \frac{2q}{4} = p - \frac{q}{2}$$

Therefore, $q \leq 2p - 4$.

Theorem 8.1.5: If G is planar and bipartite, then $q \leq 2p - 4$.

Theorem 8.1.6: $K_{3,3}$ is not planar.

Theorem 8.1.7: Every planar graph has a vertex with degree \leq 5. *Proof:*

Dual Graphs

Definition: Given a plane drawing of a planar graph G, the **dual** graph D(G) of G is a graph with vertices corresponding to the regions of G. Two vertices are connected by an edge each time the two regions share an edge as a border.

▶ The dual graph of a simple graph may not be simple.

Two regions may be adjacent multiple times.

• G and D(G) have the same number of edges.

Definition: A graph G is self-dual if G is isomorphic to D(G).

Maps

Definition: A *map* is a plane drawing of a connected, bridgeless, planar multigraph. If the map is 3-regular, then it is a **normal map**.

Definition: In a map, the regions are called **countries**. Countries may share several edges.

Definition: A proper coloring of a map is an assignment of colors to each country so that no two adjacent countries are the same color.*Question:* How many colors are necessary to properly color a map?

Proper Map Colorings

Lemma 8.2.2: If *M* is a map that is a union of simple closed curves, the regions can be colored by two colors.

Proof: Color the regions *R* of *M* as follows:

 $\begin{cases} black & \text{if } R \text{ is enclosed in an odd number of curves} \\ white & \text{if } R \text{ is enclosed in an even number of curves} \end{cases}$. This is a proper coloring of M. Any two adjacent regions are on opposite sides of a closed curve, so the number of curves in which each is enclosed is off by one.

The Four Color Theorem

Lemma 8.2.6: (The Four Color Theorem) Every normal map has a proper coloring by four colors. *Proof:* Very hard.

 \star This is the wrong object \star

Theorem: If G is a plane drawing of a maximal planar graph, then its dual graph D(G) is a normal map.

- Every face of G is a triangle \rightsquigarrow
- G is connected \rightsquigarrow
- G is planar \rightsquigarrow

The Four Color Theorem

Assuming Lemma 8.2.6,

- G is maximal planar $\Rightarrow D(G)$ is a normal map
 - $\Rightarrow D(G) \text{ is a normal map} \\\Rightarrow \text{ countries of } D(G) \text{ 4-colorable} \\\Rightarrow \text{ vertices of } G \text{ 4-colorable}$

$$\Rightarrow \chi(G) \leq 4$$

This proves

Theorem 8.2.8: If G is maximal planar, then $\chi(G) \leq 4$.

Since every planar graph is a subgraph of a maximal planar graph, Lemma C implies:

Theorem 8.2.9: If G is a planar graph, then $\chi(G) \leq 4$.

 \star History \star