Maximal Planar Graphs

A graph with "too many" edges isn't planar; how many is too many?
Goal: Find a numerical characterization of "too many"
Definition: A planar graph is called maximal planar if adding an edge between any two non-adjacent vertices results in a non-planar graph.
Examples: Octahedron
K_{4}
$K_{5} \backslash e$

What do we notice about these graphs?

Numerical Conditions on Planar Graphs

- Every face of a maximal planar graph is a triangle!

Theorem 8.1.2: If G is maximal planar, then $q=3 p-6$.
Proof: In any plane drawing of G, let $p=\#$ of vertices, $q=\#$ of edges, and $r=\#$ of regions.
We will count the number of face-edge incidences in two ways.
From a face-centric POV, the number of face-edge incidences is
From an edge-centric POV, the number of face-edge incidences is
Substitute into Euler's formula:

- Every planar graph is a subgraph of a maximal planar graph.
- Every maximal planar graph has exactly $q=3 p-6$ edges.

Cor 8.1.3: Every planar graph with p vertices has at most $3 p-6$ edges!

Numerical Conditions on Planar Graphs

Theorem 8.1.4: The graph K_{5} is not planar.

Proof:

Theorem 8.1.5*: If G is planar with girth ≥ 4, then $q \leq 2 p-4$.
Proof: Modify the above proof-instead of $3 r=2 q$, we know $4 r \leq 2 q$. This implies that

$$
2=p-q+r \leq p-q+\frac{2 q}{4}=p-\frac{q}{2} .
$$

Therefore, $q \leq 2 p-4$.
Theorem 8.1.5: If G is planar and bipartite, then $q \leq 2 p-4$.
Theorem 8.1.6: $K_{3,3}$ is not planar.
Theorem 8.1.7: Every planar graph has a vertex with degree ≤ 5.
Proof:

Dual Graphs

Definition: Given a plane drawing of a planar graph G, the dual graph $D(G)$ of G is a graph with vertices corresponding to the regions of G. Two vertices are connected by an edge each time the two regions share an edge as a border.

- The dual graph of a simple graph may not be simple.
- Two regions may be adjacent multiple times.
- G and $D(G)$ have the same number of edges.

Definition: A graph G is self-dual if G is isomorphic to $D(G)$.

Maps

Definition: A map is a plane drawing of a connected, bridgeless, planar multigraph. If the map is 3 -regular, then it is a normal map.

Definition: In a map, the regions are called countries. Countries may share several edges.

Definition: A proper coloring of a map is an assignment of colors to each country so that no two adjacent countries are the same color.

Question: How many colors are necessary to properly color a map?

Proper Map Colorings

Lemma 8.2.2: If M is a map that is a union of simple closed curves, the regions can be colored by two colors.

Proof: Color the regions R of M as follows:
$\left\{\begin{array}{ll}\text { black } & \text { if } R \text { is enclosed in an odd number of curves } \\ \text { white } & \text { if } R \text { is enclosed in an even number of curves }\end{array}\right\}$.
This is a proper coloring of M. Any two adjacent regions are on opposite sides of a closed curve, so the number of curves in which each is enclosed is off by one.

The Four Color Theorem

Lemma 8.2.6: (The Four Color Theorem)
Every normal map has a proper coloring by four colors.
Proof: Very hard.
\star This is the wrong object \star
Theorem: If G is a plane drawing of a maximal planar graph, then its dual graph $D(G)$ is a normal map.

- Every face of G is a triangle \rightsquigarrow
- G is connected \rightsquigarrow
- G is planar \rightsquigarrow

The Four Color Theorem

Assuming Lemma 8.2.6,
G is maximal planar $\Rightarrow D(G)$ is a normal map
\Rightarrow countries of $D(G)$ 4-colorable
\Rightarrow vertices of G 4-colorable
$\Rightarrow \quad \chi(G) \leq 4$
This proves
Theorem 8.2.8: If G is maximal planar, then $\chi(G) \leq 4$.
Since every planar graph is a subgraph of a maximal planar graph, Lemma C implies:

Theorem 8.2.9: If G is a planar graph, then $\chi(G) \leq 4$.

* History *

