Planarity

Up until now, graphs have been completely abstract.
In Topological Graph Theory, it matters how the graphs are drawn.

- Do the edges cross?
- Are there knots in the graph structure?

Definition: A drawing of a graph G is a pictorial representation of G in the plane as points and line segments. The line segments must be simple curves, which means no intersections are allowed.
Definition: A plane drawing of a graph G is a drawing of the graph in the plane with no crossings. Otherwise, G is nonplanar.
Definition: A planar graph is a graph that has a plane drawing.
Example: K_{4} is a planar graph because
is a plane drawing of K_{4}.

Vertices, Edges, and Faces

Definition: In a plane drawing, edges divide the plane into regions, or faces.

There will always be one face with infinite area. This is called the outside face.

Notation: Let $p=\#$ of vertices, $q=\#$ of edges, and $r=\#$ of regions.
Compute the following data:

Graph	p	q	r	
Tetrahedron				
Cube				
Octahedron				
Dodecahedron				
Icosahedron				

In 1750, Euler noticed that \qquad in each of these examples.

Euler's Formula

Theorem 8.1.1: (Euler's Formula) If G is connected, then in a plane drawing of $G, p-q+r=2$.

Proof: (by induction on the number of cycles)
Base Case: If G is a tree, there is one region, so

$$
p-q+r=p-(p-1)+1=2 .
$$

Inductive Step: Suppose that for all plane drawings with fewer than k cycles, $p-q+r=2$, we wish to prove that in a plane drawing of a graph G with exactly k cycles, $p-q+r=2$ also holds.

Let C be a cycle in G. Let e be any edge in C, then e is adjacent to two different regions, one inside C and one outside C.
$G \backslash e$ has fewer cycles than G, and one fewer region. The inductive hypothesis holds for $G \backslash e$, giving

