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Characterization of Graphs with Eulerian Circuits

There is a simple way to determine if a graph has an Eulerian circuit.

Theorems 3.1.1 and 3.1.2: Let G be a pseudograph that is
connected∗ except possibly for isolated vertices. Then,
G has an Eulerian circuit ⇐⇒ the degree of every vertex is even.

The Königsberg bridge pseudograph has four vertices of odd
degree, and therefore does not have an Eulerian circuit.

(⇒) Euler, 1736: Given an Eulerian circuit C , each time a vertex
appears in the circuit, there must be an “in edge” and an “out
edge”, so the total degree of each vertex must be even.

(⇐) Hierholzer, 1873: This is harder; we need the following lemma.
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Proof of Lemma 3.1.3

Lemma 3.1.3: If the degree of every vertex in a pseudograph is
even, then every non-isolated vertex lies in some circuit in G .

Proof: Start a trail at any non-isolated vertex A in G .

Whenever the trail arrives at some other vertex B , there must be
an odd number of edges incident to B not yet traversed by the trail.

So there is some edge to follow out of B ; take it.

The trail must eventually return to A, giving us a circuit.
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Proof of Theorem 3.1.2
! Each vertex in G has even degree =⇒ G has an Eulerian circuit !

Find the longest circuit C in G . If C uses every edge, we are done.
If not, we’ll show a contradiction to the maximality of C .

Remove all edges of C from G and any isolated vertices to form H.
H is a pseudograph where each vertex is of even degree.
Since G is connected, C and H must share a vertex A.
Write C as C = · · · e1Ae2 · · · .

Find a circuit D in H through A.
Write D as D = · · · f1Af2 · · · .
No edges of D repeat nor are they in C
Define a new circuit C ′ = · · · e1Af2 · · · f1Ae2 · · · .

C ′ is a longer circuit in G than C , contradicting its maximality. !
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Other related theorems

Theorem 3.1.6: Let G be a connected∗ pseudograph. Then,
G has an Eulerian trail ⇔ G has exactly two vertices of odd degree.

Proof: Let x and y be the two vertices of odd degree. Add edge
xy to G ; G + xy is a pseudograph with each vertex of even degree.
By Theorem 3.1.2, there exists an Eulerian circuit in G + xy .
Remove xy from the circuit and you have an Eulerian trail in G .

Remark: When drawing a picture without lifting your pencil, start
and end at the vertices of odd degree!

Theorem 3.1.5: A pseudograph G has a decomposition into
cycles if and only if every vertex has even degree.
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Application: de Bruijn sequences

Consider the following example of a de Bruijn sequence:

0000110101111001

Each of the sixteen binary sequences of length 4 are present (where
we allow cycling):

0000 0100 1000 1100
0001 0101 1001 1101
0010 0110 1010 1110
0011 0111 1011 1111

This is the most compact way to represent these sixteen sequences.
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Sequence definitions

Definition: An alphabet is a set A = {a1, . . . , ak}.
Definition: A sequence or word from A is a succession

S = s1s2s3 · · · sl , where each si ∈ A; l is the length of S .

Definition: A sequence is called a binary sequence when A = {0, 1}.

Definition: A de Bruijn sequence of order n on the alphabet A
is a sequence of length kn such that every word of length n
is a consecutive subsequence of S . (and called binary if A = {0, 1})

Theorem: A de Bruijn sequence of any order n on any
alphabet A always exists.

Proof: Use the theory of Eulerian circuits on certain graphs:
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de Bruijn graphs

Definition: The de Bruijn graph of order n on A = {a1, a2, . . . , ak}
is a directed pseudograph that has as its vertices words of A of
length n − 1. Each vertex has k out-edges corresponding to the k
letters of the alphabet A. Following edge ai adds letter ai to the
end of the sequence and removes the first letter from the sequence:

b1b2 · · · bn−1
ai−→ b2 · · · bn−1ai

Examples:
The binary de Bruijn

graph of order 3
The de Bruijn graph of order 2
on the alphabet A = {a, b, c}.
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Proof that a de Bruijn sequence always exists

The de Bruijn graph G of order n on alphabet A is connected and
each vertex has as many edges entering as leaving the vertex. This
implies that G has an Eulerian circuit C (of length kn).

Follow C and record in order the sequence S of labels of edges visited.

Claim: S is a de Bruijn sequence of order n on A.

We know that S is of length kn. We must now verify that every
sequence of length n appears as a consecutive subsequence in S .

By construction, the sequence of the n − 1 labels of edges visited
before arriving at a vertex is exactly the name of the vertex. The
word formed by this name followed by the label of an outgoing edge
is a word of A of length n and is different for every edge of C . This
implies that every sequence appears as a consecutive subseq. of S .
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Example: The binary de Bruijn graph of order 4
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1 Find an Eulerian circuit in this graph.

2 Write down the corresponding sequence.

3 Verify that it is a de Bruijn sequence. (use chart, p.77)

4 Convince yourself that the name of a vertex is the same as the
sequence formed by the three previous edges.


