Bipartite graphs

Question: What is $\chi(C_n)$ when *n* is odd?

Answer:

Definition: A graph is called **bipartite** if $\chi(G) \leq 2$.

Examples: $K_{m,n}$, \Box_n , Trees

Theorem 2.1.6: G is bipartite \iff every cycle in G has even length.

 (\Rightarrow) Let G be bipartite. Assume that there is some cycle C of odd length contained in $G \dots$

Proof of Theorem 2.1.6

(\Leftarrow) Suppose that every cycle in *G* has even length. We want to show that *G* is bipartite. Consider the case when *G* is connected.

Plan: Construct a coloring on G and prove that it is proper.

Choose some starting vertex x and color it blue. For every other vertex y, calculate the distance from y to x and then color y:

 $\begin{cases} blue & \text{if } d(x, y) \text{ is even.} \\ \text{red} & \text{if } d(x, y) \text{ is odd.} \end{cases}$

Question: Is this a proper coloring of G?

Suppose not. Then there are two vertices v and w of the same color that are adjacent. This generates a contradiction because there exists an odd cycle as follows:

Edge Coloring

Parallel to the idea of vertex coloring is the idea of edge coloring.

Definition: An edge coloring of a graph G is a labeling of the edges of G with colors. [Technically, it is a function $f : E(G) \rightarrow \{1, 2, ..., I\}$.]

Definition: A **proper** edge coloring of G is an edge coloring of G such that no two *adjacent edges* are colored the same.

Example: Cube graph (\square_3) :

We can properly edge color \Box_3 with _____ colors and no fewer.

Definition: The minimum number of colors necessary to properly edge color a graph G is called the **edge chromatic number** of G, denoted $\chi'(G) =$ "chi prime".

Edge coloring theorems

Theorem 2.2.1: For any graph G, $\chi'(G) \ge \Delta(G)$.

Theorem 2.2.2: Vizing's Theorem: For any graph G, $\chi'(G)$ equals either $\Delta(G)$ or $\Delta(G) + 1$. **Proof:** Hard. (See reference [24] if interested.) **Consequence:** To determine $\chi'(G)$,

Fact: Most 3-regular graphs have edge chromatic number 3.

Snarks

Definition: A 3-regular graph with edge chromatic number 4 is called a **snark**.

Example: The Petersen graph *P*:

The edge chromatic number of complete graphs

Goal: Determine $\chi'(K_n)$ for all n.

Vertex Degree Analysis: The degree of every vertex in K_n is ____. Vizing's theorem implies that $\chi'(K_n) =$ ____ or ____. If $\chi'(K_n) =$ ____, then each vertex has an edge leaving of each color.

Q: How many red edges are there?

This is only an integer when:

So, the best we can expect is that $\begin{cases} \chi'(K_{2n}) = \\ \chi'(K_{2n-1}) = \end{cases}$

The edge chromatic number of complete graphs

Theorem 2.2.3: $\chi'(K_{2n}) = 2n - 1$. *Proof:* We prove this using the *turning trick*. Label the vertices of K_{2n} $0, 1, \ldots, 2n - 2, x$. Now, Connect 0 with x , Connect 1 with 2n - 2, Connect n-1 with n Now **turn** the edges. And do it again. (and again, ...) Each time, new edges are used. This is because each of the 5 edges is a different "circular length": vertices are at circ. distance

The edge chromatic number of complete graphs

Theorem 2.2.4: $\chi'(K_{2n-1}) = 2n - 1$.

This construction also gives a way to edge color K_{2n-1} with 2n - 1 colors—simply delete vertex x!

This is related to the area of combinatorial designs.

Question: Is it possible for six tennis players to play one match per day in a five-day tournament in such a way that each player plays each other player once?

Day 1	0x	14	23
Day 2	1x	20	34
Day 3	2x	31	40
Day 4	3x	42	01
Day 5	4x	03	12

Theorem 2.2.3 proves there is such a tournament for all even numbers.