Bipartite graphs

Question: What is $\chi\left(C_{n}\right)$ when n is odd?
Answer:
Definition: A graph is called bipartite if $\chi(G) \leq 2$.
Examples: $K_{m, n}, \square_{n}$, Trees

Theorem 2.1.6: G is bipartite \Longleftrightarrow every cycle in G has even length.
(\Rightarrow) Let G be bipartite. Assume that there is some cycle C of odd length contained in G...

Proof of Theorem 2.1.6

(\Leftarrow) Suppose that every cycle in G has even length. We want to show that G is bipartite. Consider the case when G is connected.

Plan: Construct a coloring on G and prove that it is proper.
Choose some starting vertex x and color it blue. For every other vertex y, calculate the distance from y to x and then color y :

$$
\begin{cases}\text { blue } & \text { if } d(x, y) \text { is even. } \\ \text { red } & \text { if } d(x, y) \text { is odd. }\end{cases}
$$

Question: Is this a proper coloring of G ?
Suppose not. Then there are two vertices v and w of the same color that are adjacent. This generates a contradiction because there exists an odd cycle as follows:

Edge Coloring

Parallel to the idea of vertex coloring is the idea of edge coloring.
Definition: An edge coloring of a graph G is a labeling of the edges of G with colors. [Technically, it is a function $f: E(G) \rightarrow\{1,2, \ldots, /\}$.]

Definition: A proper edge coloring of G is an edge coloring of G such that no two adjacent edges are colored the same.

Example: Cube graph $\left(\square_{3}\right)$:

We can properly edge color \square_{3} with \qquad colors and no fewer.

Definition: The minimum number of colors necessary to properly edge color a graph G is called the edge chromatic number of G, denoted $\chi^{\prime}(G)=$ "chi prime".

Edge coloring theorems

Theorem 2.2.1: For any graph $G, \chi^{\prime}(G) \geq \Delta(G)$.
Theorem 2.2.2: Vizing's Theorem:
For any graph $G, \chi^{\prime}(G)$ equals either $\Delta(G)$ or $\Delta(G)+1$.
Proof: Hard. (See reference [24] if interested.)
Consequence: To determine $\chi^{\prime}(G)$,

Fact: Most 3-regular graphs have edge chromatic number 3.

Snarks

Definition: A 3-regular graph with edge chromatic number 4 is called a snark.

Example: The Petersen graph P :

The edge chromatic number of complete graphs
Goal: Determine $\chi^{\prime}\left(K_{n}\right)$ for all n.
Vertex Degree Analysis: The degree of every vertex in K_{n} is \qquad .

Vizing's theorem implies that $\chi^{\prime}\left(K_{n}\right)=$ \qquad or \qquad .
If $\chi^{\prime}\left(K_{n}\right)=\ldots$, then each vertex has an edge leaving of each color.
Q: How many red edges are there?
This is only an integer when:
So, the best we can expect is that $\left\{\begin{array}{l}\chi^{\prime}\left(K_{2 n}\right)= \\ \chi^{\prime}\left(K_{2 n-1}\right)=\end{array}\right.$

The edge chromatic number of complete graphs
Theorem 2.2.3: $\quad \chi^{\prime}\left(K_{2 n}\right)=2 n-1$.
Proof: We prove this using the turning trick.
Label the vertices of $K_{2 n}$
$0,1, \ldots, 2 n-2, x$. Now,
Connect 0 with x
Connect 1 with $2 n-2$,
Connect $n-1$ with n.
Now turn the edges.
And do it again. (and again, ...)
Each time, new edges are used.
This is because each of the
 edges is a different "circular length": vertices are at circ. distance $1,3,5, \ldots, 4,2$ from each other, and x is connected to a different vertex each time.

The edge chromatic number of complete graphs
Theorem 2.2.4: $\quad \chi^{\prime}\left(K_{2 n-1}\right)=2 n-1$.
This construction also gives a way to edge color $K_{2 n-1}$ with $2 n-1$ colors-simply delete vertex x !

This is related to the area of combinatorial designs.
Question: Is it possible for six tennis players to play one match per day in a five-day tournament in such a way that each player plays each other player once?
Day $1 \quad 0 x \quad 14 \quad 23$

Day 2 1x 2034
Day 3 2x 3140
Day 4 3x $42 \quad 01$
Day 5 4x 0312

Theorem 2.2.3 proves there is such a tournament for all even numbers.

