(Vertex) Colorings

Today we will discuss the idea of vertex colorings.
Definition: A coloring of a graph G is a labeling of the vertices of G with colors. [Technically, it is a function $f: V(G) \rightarrow\{1,2, \ldots, /\}$.]

Definition: A proper coloring of G is a coloring of G such that no two adjacent vertices are labeled with the same color.

Example: W_{6} :

We can properly color W_{6} with \qquad colors and no fewer.

Of interest: What is the fewest colors necessary to properly color G ?

The chromatic number of a graph

Definition: The minimum number of colors necessary to properly color a graph G is called the chromatic number of G, denoted $\chi(G)=" c h i "$.
Example: $\chi\left(K_{n}\right)=$ \qquad
Proof: In order to have a proper coloring of K_{n}, we would need to use at least \qquad colors, because every vertex is adjacent to every other vertex. With fewer than \qquad colors, there would be two adjacent vertices colored the same. And indeed, placing a different color on each vertex is a proper coloring of K_{n}.
$\star \chi(G)=k$ is the same as:
(1) There is a proper coloring of G with k colors.
(2) There is no proper coloring of G with $k-1$ colors. (Prove it!)

Chromatic numbers and subgraphs

Lemma C : If H is a subgraph of G, then $\chi(H) \leq \chi(G)$.
Proof: If $\chi(G)=k$, then there is a proper coloring of G using k colors. Let the vertices of H inherit their coloring from G. This gives a proper coloring of H using k colors, which implies $\chi(H) \leq k$.

Corollary: For any graph $G, \chi(G) \geq \omega(G)$.
Proof: Apply Lemma C to the subgraph of G isomorphic to $K_{\omega(G)}$.
Example: Calculate $\chi(G)$ for this graph G :

Critical graphs

One way to prove that G can not be properly colored with $k-1$ colors is to find a subgraph H of G that requires k colors.

How small can this subgraph be?
Definition: A graph G is called critical if for every proper subgraph $H \varsubsetneqq G$, then $\chi(H)<\chi(G)$.

Theorem 2.1.2: Every graph G contains a critical subgraph H such that $\chi(H)=\chi(G)$.

Proof: If G is critical, stop. Define $H=G$.
If not, then there exists a proper subgraph G_{1} of G with \qquad If G_{1} is critical, stop. Define $H=G_{1}$.
If not, then there exists a proper subgraph G_{2} of G with \qquad ...
Since G is finite, there will be some proper subgraph G_{l} of G such that G_{l} is critical and $\chi\left(G_{l}\right)=\chi\left(G_{l-1}\right)=\cdots=\chi(G)$.

Critical graphs

What do we know about critical graphs?
Theorem 2.1.1: Every critical graph is connected.
Theorem 2.1.3: If G is critical with $\chi(G)=4$, then for all $v \in V(G), \operatorname{deg}(v) \geq 3$.

Proof by contradiction: Suppose not. Then there is some $v \in V(G)$ with $\operatorname{deg}(v) \leq 2$. Remove v from G to create H.

Similarly: If G is critical, then for all $v \in V(G), \operatorname{deg}(v) \geq \chi(G)-1$.

