Connectivity

Definition: A graph G is connected if for every pair of vertices a and b in G, there is a path from a to b in G. That is, there exists a sequence of distinct vertices $v_{0}, v_{1}, \ldots, v_{k}$ such that $v_{0}=a, v_{k}=b$, and $v_{i-1} v_{i}$ is an edge of G for all $i, 1 \leq i \leq k$.

When a graph is disconnected, it does have connected subgraphs.
Definition: In a graph G, a connected component H is a maximally connected subgraph. (In terms of vertices and edges.)

More precisely, for every subgraph K such that

$$
H \varsubsetneqq K \subset G
$$

K is not connected.

Lemmas A and B

Lemma A: If there is a path from vertex a to vertex b in G and from vertex b to vertex c in G, then there is a path from vertex a to vertex c in G.
Proof: By hypothesis,

- There exist paths $P: a v_{1} v_{2} \cdots v_{k} b$ and $Q: b w_{1} w_{2} \cdots w_{l} c$ in G.
- If all the vertices are distinct, path R :
- If not all vertices are distinct,

Lemma B: Let G be a connected graph. Let C be a cycle contained in G. Let e be any edge in C. If H is the graph resulting from removing e from G, then H is connected.
Proof: You will prove this in the homework.
Hints:

Connectivity and edges

Theorem 1.3.1: If G is a connected graph with p vertices and q edges, then $p \leq q+1$.

Proof: Induction on the number of edges of G.

- Base Case. If G is connected and has fewer than three edges, then G equals either:
- Inductive Step.

Inductive hypothesis:
$p \leq q+1$ holds for all connected graphs with
We want to show:
$p \leq q+1$ holds for all connected graphs with
Break into cases, depending on whether G contains a cycle.

Connectivity and edges

- Case 1. There is a cycle C in G.

Use Lemma B. After removing an edge from C, the resulting graph H is connected...

- Case 2. There is no cycle in G.

Find a path P in G that can not be extended.
Claim: The endpoints of P, a and b, are leaves of G.
Remove a and its incident edge to form a new graph H. If possible, apply the inductive hypothesis to H.

* Important Induction Item: Always remove edges. *

Trees and forests

Definition: A tree is a connected graph that contains no cycles.
Definition: A forest is a graph that contains no cycle.
These definitions imply: (Fill in the blanks)
(1) Every connected component of a forest \qquad
(2) A connected forest \qquad .
(3) A subgraph of a forest \qquad
(3) A subgraph of a tree \qquad .
(3) Every tree is a forest.

Thm 1.3.2, 1.3.3: Let G be a connected graph with p vertices and q edges. Then,

$$
G \text { is a tree } \Longleftrightarrow p=q+1
$$

Thm 1.3.5: $\quad G$ is a tree iff there exists exactly one path between each pair of vertices.

Proof Sketches

Proof of Thm 1.3.3: [G connected. Then $p=q+1 \Rightarrow G$ is a tree.]
Proof by contradiction. Suppose G is connected and not a tree.
We want to show that $p \neq q+1$.

Proof of Thm 1.3.5: [G tree iff exactly one path between v_{1} and v_{2}.]
Suppose that G is a tree. Then at least one path between v_{1} and v_{2}. What if two paths, $P_{1}=v_{1} u_{1} u_{2} \cdots u_{n} v_{2}$ and $P_{2}=v_{1} w_{1} w_{2} \cdots w_{m} v_{2}$?
(\Leftarrow) Suppose that G is not a tree. Then if G is not connected, If G is connected and contains a cycle,

