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Determining Probabilities

Three methods for determining the probability of an occurrence:

◮ Relative frequency method: Repeat an experiment many
times; assign as the probability the fraction occurrences

# experiments run .

Example. Hit a bulls-eye 17 times out of 100; set the
probability of hitting a bulls-eye to be p(bulls-eye) = 0.17.

◮ Equal probability method: Assume all outcomes have equal
probability; assign as the probability 1

# of possible outcomes .

Example. Each side of a dodecahedral die is equally likely to
appear; decide to set p(1) = 1

12 .

◮ Subjective guess method: If neither method above applies,
give it your best guess.

Example. How likely is it that your friend will come to a party?
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Component Reliability

Many systems consist of components pieced together. To
determine how reliable the system is, determine how reliable each
component is and apply probability rules.

Definition: The reliability of a system is its probability of success.

Example. Launch the space shuttle into space with a three-stage
rocket. Stage 1 → Stage 2 → Stage 3

⋆ In order for the rocket to launch, all components must succeed.

Let R1 = 90%, R2 = 95%, R3 = 96% be the reliabilities of Stages 1–3.

p(system success) = p(S1 success and S2 success and S3 success)
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Component Reliability

Example. Communicating with the space shuttle.
There are two independent methods in which earth can
communicate with the space shuttle

◮ A microwave radio with reliability R1 = 0.95

◮ An FM radio, with reliability R2 = 0.96.

⋆ In order to be able to communicate with the shuttle, at least one
of components must work.

p(system success) = p(MW radio success or FM radio success)



Markov Chains 82

Markov Chains

A Markov chain is a sequence of random variables from some sample
space, each corresponding to a successive time interval. From one time
interval to the next, there is a fixed probability ai ,j of transitioning
from state j to state i . No transition depends on a past transition.

Keep track of these probabilities in an associated transition matrix A.

Example. Suppose you run a rental company based in Orlando and
Tampa, Florida. People often drive between the cities; cars can be
picked up and dropped off in either city. Suppose that historically,

Orlandon

Orlandon+160%

Tampan+140%

Tampan

Orlandon+130%

Tampan+170%

What distribution of cars can the company expect in the long run?
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Markov Chains

We will model this situation with a Markov Chain.

The historical data suggest that with a
probability of 0.6, a car in Orlando at time
n will be in Orlando at time n+1. Use this
and the other expected transition probabil-
ities to form the transition matrix A.

FROM:
Or Tm

T
O

:
T

m
O

r [
0.6 0.3
0.4 0.7

]

= A,

◮ Let on be the probability that a car is in Orlando on day n

◮ Let tn be the probability that a car is in Tampa on day n.

We can represent the distribution of cars at time n with the vector

~xn =

[

on

tn

]

; notice that ~xn+1 =

[

on+1

tn+1

]

= A ·

[

on

tn

]

= A~xn will be

the distribution at time n + 1. Given an initial distribution,

~x0 =

[

o0

t0

]

, the expected distribution of cars at time n is ~xn = An~x0.
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Markov Chains

For example, if they company starts off with twice as many cars in

Orlando as in Tampa, then ~x0 =

[

2/3
1/3

]

, so we expect

~x1 =

[

0.6 0.3
0.4 0.7

] [

2/3
1/3

]

=

[ ]

.

~x2 =

[

0.6 0.3
0.4 0.7

] [ ]

=

[ ]

.

How do we determine the expected distribution in the long run?
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Markov Chains

Definition: Given a Markov Chain with transition matrix A, an
equilibrium distribution is a vector ~xeq that satisfies A~xeq = ~xeq .

[Linear Algebra: ~xeq is an eigenvector corresponding to λ = 1.]

In our example, the equilibrium distribution satisfies
[

0.6 0.3
0.4 0.7

] [

oeq

teq

]

=

[

oeq

teq

]

.

That is, 0.6oeq + 0.3teq = oeq and 0.4oeq + 0.7teq = teq.
Both equations reduce to 0.3teq = 0.4oeq , so oeq = 3

4teq.

Conclusion: If the company has 7000 cars in all, they would expect
that in the long run,

Note on Markov Chains: The sum of the entries in every column of
A is 1, because the total probability of transitioning from state i is 1.

There is no rule for what the row sum will be.
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