Deterministic versus Probabilistic

Deterministic: All data is known beforehand

- Once you start the system, you know exactly what is going to happen.
- ▶ *Example.* Predicting amount of money in a bank account.
 - If you know the initial deposit, and the interest rate
 - ▶ You can determine the amount in the account after one year.

Probabilistic: Element of chance is involved

- You know the likelihood that something will happen, but don't know when.
- *Example.* Roll a die until it comes up '5'.
 - Know that in each roll, a '5' will come up with probability 1/6.
 - Don't know exactly when, but we can predict well.

Basic Probability

Definition: An experiment is any process whose outcome is uncertain. Definition: The set of all possible outcomes of an experiment is called the sample space, denoted X or S.

Definition: Each outcome $x \in X$ has a number between 0 and 1 that measures its likelihood of occurring. This is the **probability** of x, denoted p(x).

Example. Rolling a die is an experiment; the sample space is $\{_ \}$. The individual probabilities are all p(i) =.

Definition: An event E is something that happens (in other words, a subset of the sample space).

Definition: Given E, the **probability** of the event (p(E)) is the sum of the probabilities of the outcomes making up the event.

Example. The roll of the die ... [is '5'] or [is odd] or [is prime] ... *Example.* $p(E_1) = _$, $p(E_2) = _$, $p(E_3) = _$.

Independent Events

Definition: Two events are **independent** if the probabilities of occurrence do not depend on one another.

Example. Roll a red die and a blue die.

- Event 1: blue die rolls a 1. Event 2: red die rolls a 6. These events are independent.
- Event 1: blue die rolls a 1. Event 2: blue die rolls a 6. These events are dependent.

Example. Pick a card, any card! Shuffle a deck of 52 cards.

Event 1: Pick a first card. Event 2: Pick a second card. These events are

Example. You wake up and don't know what day it is.

Event 1: Today is a weekday.	E_1 vs. E_2
Event 2: Today is cloudy.	E_2 vs. E_3
Event 3: Today is Modeling day.	E_1 vs. E_3

Independent Events

▶ When events E_1 (in X_1) and E_2 (in X_2) are *independent* events, $p(E_1 \text{ and } E_2) = p(E_1)p(E_2).$

Example. What is the probability that today is a cloudy weekday?

► When events
$$E_1$$
 (in X_1) and E_2 (in X_2) are *independent* events,
 $p(E_1 \text{ or } E_2) = 1 - (1 - P(E_1))(1 - P(E_2))$
 $= P(E_1) + P(E_2) - p(E_1)p(E_2)$

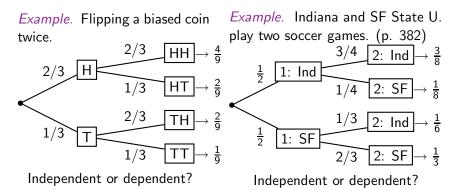
Proof: Venn diagram / rectangle

Example. What is the probability that you roll a blue 1 OR a red 6? This does not work with *dependent* events.

Decision Trees

Definition: A **multistage** experiment is one in which each stage is a simpler experiment. They can be represented using a **tree diagram**.

Each branch of the tree represents one outcome x of that level's experiment, and is labeled by p(x).



Expected value / mean

"Even with the randomness, what do you expect to happen?"

Suppose that each outcome in a sample space has a number r(x) attached to it. (examples: number of pips on a die, amount of money you win on a bet, inches of precipitation falling)

This function *r* is called a **random variable**.

Definition: The **expected value** or **mean** of a random variable is the sum of the numbers weighted by their probabilities. Mathematically,

$$\mu = E[X] = p(x_1)r(x_1) + p(x_2)r(x_2) + \cdots + p(x_n)r(x_n).$$

Idea: With probability $p(x_1)$, there is a contribution of $r(x_1)$, etc.

Example. How many heads would you expect on average when flipping a biased coin twice?

Example. How many wins do you expect Indiana to have?

Expected value / mean

When two random variables are on two independent experiments, the expected value operation behaves nicely:

$$E[X + Y] = E[X] + E[Y]$$
 and $E[XY] = E[X]E[Y]$.

Example. We throw a red die and a blue die. What is the expected value of the sum of the dice and the product of the dice?

b+r	1	2	3	4	5	6
1	2	3	4	5	6	7
2	3	4	5	6	7	8
3	4	5	6	7	8	9
4	5	6	7	8	9	10
5	6	7	8	9	10	11
6	7	8	9	10	11	12

b* ^r	1	2	3	4	5	6
1	1	2	3	4	5	6
2	2	4	6	8	10	12
3	3	6	9	12	15	18
4	4	8	12	16	20	24
5	5	10	15	20	25	30
6	6	12	18	24	30	36

E[X + Y] = E[XY] =