Models always have errors \rightsquigarrow

- Be aware of them.
- ▶ Understand and account for them!
- Include in model discussion.

Types of Errors

- Formulation Errors occur when simplifications or assumptions are made. (*)
- 2 Observation Errors occur during data collection. (*)
- **Truncation Errors** occur when you approximate an incalculable function.
- 4 Rounding Errors occur during calculations when your computing device can't keep track of exact numbers.

Formulation Errors occur when simplifications or assumptions are made.

Example from the book, pp. 70-73: Seismology.

Set off an explosion at one place and measure it at another (dist. D). Create a model to determine the depth of a layer in the crust based on the time for the initial explosion to arrive T, and the second shock T'.

$$d = \frac{D}{2}\sqrt{(T'/T)^2 - 1}$$

Assumptions: The earth is flat, and the layer is parallel to the surface.

If layers are not parallel (off by α°), the percent errors can be large!

α	1	5	10	30
% error	3.4	18	37	105

2 Observation Errors occur during data collection.

Continuation of the previous example:

Even if the layers are parallel, perhaps our timing is inaccurate. Let's say that T is 1 second and T' is 1.2 seconds, but that our timer is off by at most 1%.

Then T might be _____ seconds or _____ seconds, and T' might be _____ seconds or _____ seconds.

Т	over	over	under	under
Τ'	over	under	over	under
% error in d	-0.5%	-5%	+6%	0%

One way to decrease influence: measure many times, take average.

Truncation Errors occur when you approximate an incalculable function.

Question: When is $x^5 + x - 1 = 0$? What is sin 1? Numerically?

Answer: Use a Taylor series approximation:

$$\sin x = x - \frac{x^3}{3!} + \frac{x^3}{5!} - \frac{x^4}{7!} + \cdots$$

Rounding Errors occur during calculations when your computing device can't keep track of exact numbers. *Question:* What is 1.2300001¹⁰?

Answer: If we only have three-digit accuracy, then $1.23 \cdot 1.23 = 1.51$, $1.23 \cdot 1.51 = 1.86$... $1.23^{10} = 7.95$ $1.2300001 \cdot 1.2300001 = 1.5129002$, $1.2300001 \cdot 1.5129002 = 1.8608674$, $1.2300001^{10} = 7.9259523$ True answer: $7.925952539912863452584748018737649320039805 \cdots$