Price - Demand Curve (p. 111-114)

Example. A company is trying to determine how demand for a new product depends on its price and collect the following data:

price p	$\$ 9$	$\$ 10$	$\$ 11$
demand d	$1200 / \mathrm{mo}$.	$1000 / \mathrm{mo}$	$975 / \mathrm{mo}$.

The company has reason to believe that price and demand are inversely proportional, that is, $d=\frac{c}{p}$ for some constant c.
\rightarrow Use the method of least squares to determine this constant c.

Price - Demand Curve (p. 111-114)

Solution. Since $f(p)=\frac{c}{p}$, then the sum $S=\sum_{\left(p_{i}, d_{i}\right)}\left[d_{i}-\left(\frac{c}{p_{i}}\right)\right]^{2}$.
Specifying datapoints gives

$$
S=\left[1200-\frac{c}{9}\right]^{2}+\left[1000-\frac{c}{10}\right]^{2}+\left[975-\frac{c}{11}\right]^{2}
$$

Setting the derivative equal to zero gives

$$
\frac{d S}{d c}=\frac{-2}{9}\left[1200-\frac{c}{9}\right]+\frac{-2}{10}\left[1000-\frac{c}{10}\right]+\frac{-2}{11}\left[975-\frac{c}{11}\right]=0
$$

Solving for c gives $c \approx 10517$.

New York City Temperature (similar to p. 158)

The graph of average weekly temperature in New York City from Jan. 2006 to Dec. 2008 gives the distinct impression of a \qquad .

We need to determine the constants in:
$\operatorname{Temp}(t)=A+B \sin (C(t-D))$.

Weekly Average Temperature in NYC

Let's simplify our model to only determine amplitude B and vertical shift A. We must make assumptions about \qquad and \qquad D. We can assume that $C=$ \qquad .

For D, find when the sine passes through zero. Since January is cold and July is hot, the zero should occur in April; guess $D \approx \frac{4}{12}$.

Fitting to $\operatorname{Temp}(t)=A+B \sin \left[t-\frac{4}{12}\right]$
gives: $\operatorname{Temp}(t)=13.9+11.8 \sin \left[t-\frac{4}{12}\right]$

Weekly Average Temperature in NYC

Interpolation vs. Extrapolation

Suppose you have collected a set of known data points $\left(x_{i}, y_{i}\right)$, and you would like to estimate the y-value for an unknown x-value.
The name for such an estimation depends on the placement of the x-value relative to the known x-values.

Interpolation

Inserting one or more x-values between known x-values.

Extrapolation

Inserting one or more x-values outside of the range of known x-values.

Interpolation vs. Extrapolation

- The most common method for interpolation is taking a weighted average of the two nearest data points; suppose $x_{1}<x<x_{2}$, then,

$$
f(x) \approx y_{1}+\frac{y_{2}-y_{1}}{x_{2}-x_{2}}\left(x-x_{1}\right)
$$

- In both interpolation and extrapolation, when you have a function f that is a good fit to the data, simply plug in $y=f(x)$.
- Confidence in approximated values depend on confidence in your data and your model.
- Confidence in extrapolated data higher when closer to the range of known x-values.

Extrapolation: Running the Mile (p. 162)

Below is a plot of the years in which a record was broken for running a mile and the record-breaking time.
The data appears to fit a line; running least-squares gives

$$
T(t)=15.5639-0.00593323 t
$$

Solving for $\mathrm{T}(\mathrm{t})=0$ gives $t \approx 2623$.
Conclusion: in the year 2623, the record will be zero minutes!

- Note the lack of descriptive realism.
- Always be careful when you extrapolate!

