Data Fitting

Definition: A mathematical model is descriptively realistic if it is deduced from a believable description of the system being modeled.

Example. Full moons. A full moon appears to occur every 29 days. Let M_L , M_N be the dates of the last and next full moons. Is the model

$$M_N = M_L + 29$$

descriptively realistic? Why?

Given a descriptively realistic model that gives a set relationship that depends on a constant, how do we determine this constant?

Springs and Elongations

Example: Modeling Spring Elongation

Take your favorite spring. Attach different masses. How much does it stretch from rest? [Its elongation.]

When we plot the data, we get the following scatterplot.

	Elongation	of a Spi	ring		
Elongation (e)	8	•	8		
10 [
8			•	•	
6		•	•		
4 -	•	•			
2	•				
0 100	200	300	400	500	Mass(x)

What do you notice? _____

m	e
50	1.000
100	1.875
150	2.750
200	3.250
250	4.375
300	4.875
350	5.675
400	6.500
450	7.250
500	8.000
	0 750

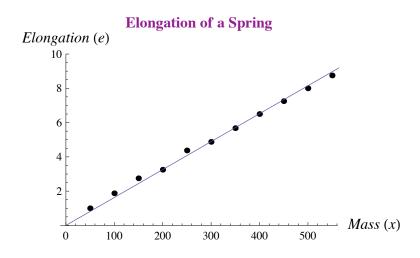
Proportionality

When data seems to lie on a line through the origin, we expect the two variables to be **proportional**; in this case, e = km for some constant k.

We need to find this **constant of proportionality** k.

So: Estimate the slope of the line. How?

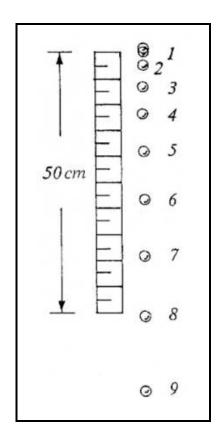
Guesstimating



Mathematically: Linear Regression / Least Squares (For another day)

Fitting Gravity Data

Example. Modeling the dropping of a golf ball



Source: practical physics.org

Let's use an experiment to test the gravity model from last time.

Use a camera to record the position every tenth of a second.

Data would be similar to the table; plotted in the scatterplot below.

Distance (x)	Position	of a drop	ped golf	ball		
15				•	•	
10 -				•		
5 -		•	•			
0.0	0.2	0.4	0.6	0.8	1.0	Time (t)

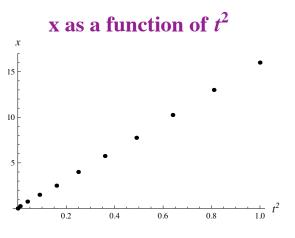
t	X
0.0	0.00
0.1	0.25
0.2	0.75
0.3	1.50
0.4	2.50
0.5	4.00
0.6	5.75
0.7	7.75
8.0	10.25
0.9	13.00
1.0	16.00

[Ignore data on p. 25.]

Fitting Gravity Data

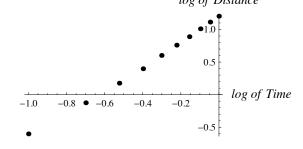
These data seem to fit a $\frac{1}{\text{(type of function)}}$. How can we be sure?

1 Plot distance as a function of t^2 .



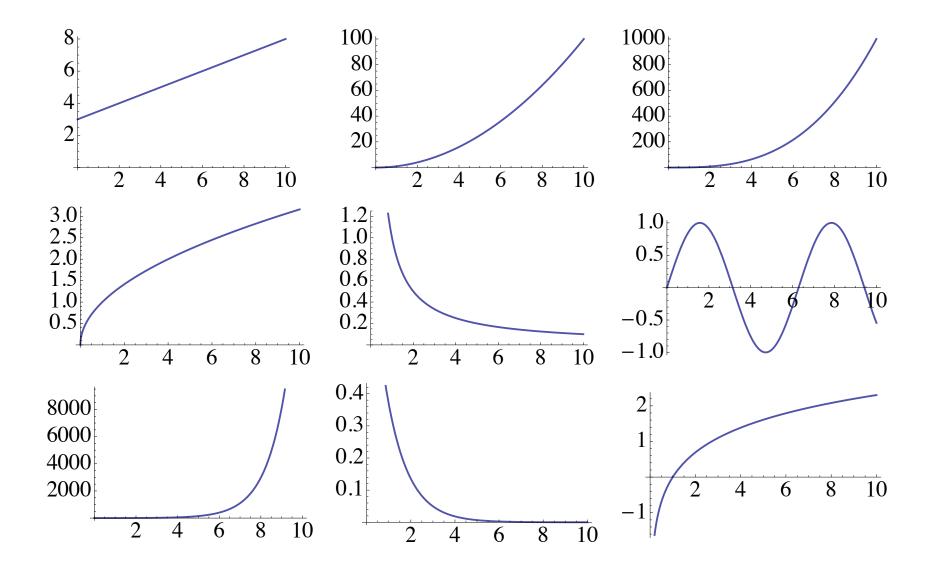
- 2 \star Plot the log of distance as a function of log of time. \star
- ► Suppose $x = Ct^2$.
- ► Taking the *log* or *ln* of both sides gives $\log x = \log(Ct^2) =$
- ► So all you need to do is fit to a line and solve for *C*!

log(x) as a function of log(t)



$$\log x \approx 2\log t + 1.2$$

Functions You Should Recognize on Sight

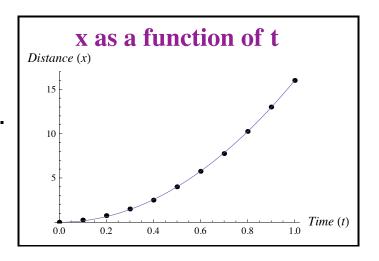


Fitting Gravity Data

We have determined that our gravity model $x(t) = 16t^2$

appears to model the dropping of a golf ball.

Is our model descriptively realistic? _____ Why?



Example. Raindrops—Our model gives their position as $x(t) = 16t^2$.

A raindrop falling from 1024 feet would land after t = 8 seconds.

However, an experiment shows that the fastest drop takes 40 seconds, and that drops fall at different rates depending on their size.

Even if we have a good model for one situation doesn't mean it will apply everywhere. We always need to question our assumptions.

—Extensive discussion in Section 1.3.—