Steven Goldman

Math 213W

Mini-Project

Project Write-up: Counting Chords and List Manipulation

I used Mathematica to figure out how many distinct chords can be played on a six stringed guitar. Before we begin, I will define some terms and explain a little bit about how a guitar is structured. A chord is defined as any combination of one or more notes played simultaneously. A distinct chord is defined as a chord whose notes are all different. For example, the chord {E, E, F} is not distinct, while {E, F, G} is distinct. On the guitar, there are twelve notes that can be played. Each note occurs multiple times in different places along the six strings. These notes are {A, A#, B, C, C#, D, D#, E, F, F#, G, G#}. For the purpose of my project, I have denoted them as {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}, respectively. The six strings, {1, 2, 3, 4, 5, 6}, will be denoted by {a, b, c, d, e, f}. Also, the six strings are divided into several sections by metal strips called frets; by choosing which fret to press down, the guitarist is able to change the note played on that string. It is important to note that at most one note can be played on a string at a time; this means that a chord cannot use a string more than once, which in turn tells us that a chord can have at most six notes in it.

The first thing I needed to do was to define which frets and notes I would be dealing with. I decided to start by using the first four frets of a guitar (in part because all twelve notes appear there). My next step was to get Mathematica output a list of all possible distinct chords that could potentially be played given twelve notes (since the first four frets have all twelve notes). In order to do this, I defined a function, PDC. This function takes as its input the number of notes allowed in a chord, x, and outputs all the subsets of size x from the set Range[12]; this is, in essence, the same as all possible distinct chords. Mathematically, the total number of these possible distinct chords should come out to C[12,x] (you can calculate this in Mathematica using the Length command, or by using the Binomial command) .

Next in line, I needed to create a function that produced a list of all possible chords (distinct and non-distinct) that could actually be played based on the frets I had chosen. I called this function NDC. This function also takes as its input the number of notes allowed in the chords, x, but outputs a list of all chords of size x that can be played within the given range. It does this by using the functions Subset and Tuples on {a, b, c, d, e, f}. It then uses both Flatten in order to un-nest the lists and Union in order to delete chords that appear more than once in the list. I also used Sort to make the function put the chords in order from least to greatest so that they would be easier to deal with when comparing them.

At this point, Mathematica has provided me with two lists. The first comes from PDC; it consists of all potential distinct chords that can be played with twelve notes. The second comes from NDC; it consists of all chords (distinct and non-distinct) that can actually be played on the given frets. Therefore, the intersection of these two lists will produce a list of all the distinct chords that can actually be played within the given frets. In order to produce this intersection, I created the function DC which takes as its input x, the number of notes allowed in the chords, and outputs the intersection of NDC and PDC. Then, by plugging in the numbers one through six for x, the DC function will output all the distinct chords. To get the total, I used the sum function. Finally, in order to help the user see the results of the DC function, I created a table of values, used manipulate, and graphed the values.

There were many useful commands I learned about list manipulation while creating this Mathematica file. Some of the ones that I ended up including in my final project were MatrixForm, Subsets, Tuples, Union, Flatten, Intersection, and Sum. Most of these commands are self-explanatory. MatrixForm takes a list of lists and puts into a matrix, which is a more viewer friendly format. Subsets creates subsets of a set or list, in which the user can determine the size of the subsets. I used Tuples to match up notes from different strings in order to produce a list of chords. Flatten is used to un-nest nested lists, and Union combines all the members of lists, deleting any copies in the process. Intersection outputs all elements of two or more lists that are common, and Sum adds up a list of objects.

Some commands I learned about but didn’t end up using were Join, Part and Split. Join is used to join together lists; Part takes a specified element from a list; and Split splits up a list and creates a nested list.

One of the hardest things about this project was figuring out how I wanted Mathematica to calculate the number of distinct chords. I initially came up with a method to calculate the distinct chords using a function that was nested many times. However, this initial method was inefficient and took several seconds to produce a result from Mathematica. Once I realized this, I had to think of a more simplified way for Mathematica to calculate what I wanted. Another thing I found hard was figuring out which commands I needed to use in order to get the desired results.

