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Approximate Binomial by Normal distribution
       In probability theory and statistics, the binomial distribution is the discrete probability distribution of the number of successes in a sequence of n independent yes/no experiments, each of which yields success with probability p, failure with probability q (p=1-q), with n numbers of trials.
First, I am trying to get a general picture of the binomial distribution when we do it for number of trials (n), where (n<=30). We need n to be less or equal than thirty, in order to see the difference when n>=30(we consider 30 is the point different between the small and the large).
The first chart:
I used manipulate command and I chose bar chart of the table that includes the pdf (probability distribution function) for the binomial distribution with n number of trials and p probability of successes and (i) variable changes between zero and forty. I chose the i-axis(my new axes instead of the x-axise) to go from zero to forty and my y-axis from zero to twenty.
Manipulate[BarChart[Table[PDF[BinomialDistribution[n,p],i],{I,0,40}],BarLabels-> Range[0,40],PlotRange->{0,20},ImageSize->{500,300}
Then I labeled my variables to be (n number of trials start from 10--30 by one),(and p number of successes from0.05--0.95 .
{{n,20,”number of trials n”},10,30,1,Appearance->”Labeled”},{{p,0.5,”probability of successes p”},0.05,0.95,Appearance->”Labled”}]]
Then, I got my first chart, which represents the general graph for the binomial distribution and shows p probability of successes in number of trials n.
The second chart:
      In this chart I am trying to give an idea about what would happened if n (number of trials) for the binomial distribution becomes very large.  Then by the central limit theorem, which implies that, for large values of n (n >= 30) a binomial random variable can be well approximated by a normal random variable with the same mean and variance. A measure of agreement between the two is obtained by computing the dark blue area (on my chart).
In this graph I am trying to prove that, Therefore, I used the manipulate command with defining a function Max to be the maximum of the binomial distribution with value of (i=0.950) and also the normal for the same value (where the mean=np, and the variance=Sqrt(n*p*q),same as Sqrt(n,p,1-p)),and then the second function called the Min to be the normal with the same mean and variance but now with a smaller value for (i) (0.001) ,in this case I limited the binomial distribution by the normal distribution from both upper and lower sides
Manipulate [With[{Max=Max[InverseCDF[BinomialDistribution[n,p],0.959],InverseCDF[NormalDistribution[n*p,Sqrt[n*p*(1-p)]],0.950]],min=Min[-0.5,InverseCDF[NormalDistribution[n*p,Sqrt[n*p*91-p)]],0.001]]}
Then I used the show command for the binomial distribution with i goes from 0 to n, with plot range goes from Min to Max (min to max), then I chose the bar style to be dark blue color, and then the plot style to be orange and thick (normal distribution), then I used the command showoverlab to see the over lab between the two distributions.

Show[BarCahrt[Table[{I,PDF[BinomailDistribution[n,p],1},{I,0,n}],Plotrange->{{Min,Max},{0.0.5}}

Then.i used the plot command to plot my charts.

Plot[PDF[NormalDistribution[n,p,Sqrt[n*p,Sqrt[n*p*(1-p)]],x],{x,Min,Max},PloRange->{0.0.5},

Then,my image size to be {500,300},Then I defined values for my varialbles.

ImageSize->{500,300}
{{n,20,”number of trials n”},20,60,1,Appearance->”Labeled”},{{p,0.5,”prpbability of successes p”},0.05,0.95,Appearance->”Labeled”}]


     Finally, my purpose from this project was to prove that for large number of trials for the binomial distribution (n>=30) we could use the normal distribution instead, and that was proved by the central limit theorem. And clearly I have reached my point through mathematica.
Clearly, I was proving one the most important theorem in mathematic especially in calculus using mathematica.
At the end of this project I know how mathematica is useful in all the topics, and in my case in proving theorems by showing graphs and their changes, in my opinion that would convince must people. 
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