
Diana M. Echeverri
11/5/09
Math 213W
Mini-Project
Cubes Within A Bigger Cube

	I wanted to have a big cube where I could fit smaller cubes into it, and see how 
many of these smaller cubes fit into the bigger cube. I also wanted to manipulate the sizes 
of the smaller cubes, to see how the different sizes affected the number of cubes fitting 
into the bigger cube. Mathematica helped me with this question, I was able to answer the 
questions and figure out how to make it so mathematica does all the work. The bigger 
cube was going from the point {0,0,0} to {1,1,1}, where {1} is the {x, y, z} coordinates.. 
For the smaller cubes I needed  to start with a number that was between (0 to 1), which would be the coordinates for {x, y, z} of the smaller cube.
	 Since the bigger cube would be solid I needed to use opacity to make it 
transparent, so you are able to see what is going on inside. The smaller you make opacity 
the more transparent the bigger cube becomes. Once the bigger cube was ready, I needed 
to see how the smaller cubes would be positioned and what size to start with. To start 
with I decided to position the cube at one end of the bigger cube which would be {0,0,0} and then have it end at {.2, .2, .2}, but it can be any number between 0 to 1. That made the smaller cubes coordinates from {0,0,0} to {.2,.2,.2}, and that would just be one cube. After  I decided which cube to start with I needed to get other cubes around this first cube to see if there was a pattern. If there was a pattern I would be able to use mathematica to help, by doing it all with only a couple of simple codes. As it turns out there was a pattern, for every new position you needed to add {.2} in a certain spot on the coordinates to get the next cube in the right spot.
	Once I was able to figure out the pattern I was able to make it a mathematica code which would create the bigger cube and the inner smaller cubes on its own. The code was to have the smaller cubes start at {x, y, z}, and end at {x+.2, y+.2, z+.2} only when the smaller cube was {.2}. The coordinates for {x, y, z} needed to start with {0} and end at a number that added to {.2} would create {1} which was {.8}, I also needed the numbers to be increments of {.2}. This meant that {x, y, z} needed to be specifies as {0, .8, .2} and by using the table code I was able to have mathematica create a big cube filled entirely of smaller cubes with the coordinates of {.2, .2, .2}. The table code made it possible for {x, y, z}, to go from {0} to {.8} with the increments of {.2}.  Once I figured all that out, I was able to manipulate the code to create other cubes of different coordinates from (.1 to .5).
	Once I was able to manipulate that code to create all those different sizes of the smaller cubes and place them inside the bigger cube, it was possible to create an even better code. This better code would be able to go through all the sizes of the cube between (.1 to .51) at increments of {.01}. With all the manipulated codes for all the different sizes of cubes I was able to find another pattern and so to the previous code I was able to add the variable {d}. Where {d} would be the size of the small cubes, I just needed to manipulate a little more to get the code. The code that I came up with was using the same variables as before to start with which were {x, y, z}, then instead of using a number to add to {x, y, z} I used the variable {d}. The coordinates {x, y, z} started as before {0}, the number it needed to end with would be {1-d} and the increments would be {d}. Now {d} needed to start with what ever number you choose, but the number needed to be between (0 to 1). The numbers I choose were (.06 to .51) because I wanted to be able to show all the different sizes and all the different ways the smaller cubes fit into the bigger one. 
	To show all these different sizes of cubes in one code I was able to use the manipulate code to do just that. The manipulate code was able to show the changing sizes of the smaller cubes, which would go from (.06 to .51) with the increments of (.01). To finish it all off I was able to stick in one more code, to tell me how many small cubes of the different sizes fit into this bigger cube. The code I used was to floor{1/d} and then tripled it. The answer mathematica would get from (1/d) would not be a single digit, which is why I used the floor code. The floor code would make the answer a single digit, but not just that it also rounded the number down. I tripled that number because in order to get how many cubes there were I need to multiply the length, width, and depth. 

