Brian M. Lewis

Math 213W

Mini-Project
November 5, 2009
Navigating Queens College

The Queens College campus has many buildings and cement walking paths to get from one place to another. What is the fastest way to get from one part of the QC campus to any other part of the campus? This is the question I posed to myself and sought to find out when I began this project. The shortest distance between two points in any space is a straight line between them. In reality though, there are many reasons why we cannot travel in a straight line to reach our destination.

I decided to use some elements of graph theory to solve this problem. I’ve decided to create a graph to represent the QC campus where the vertices are either building entrances or simply the meeting of two walking paths. Here is the definition of a graph in the context that I am using it.

“In mathematics, a graph is an abstract representation of a set of objects where some pairs of the objects are connected by links. The interconnected objects are represented by mathematical abstractions called vertices, and the links that connect some pairs of vertices are called edges. Typically, a graph is depicted in diagrammatic form as a set of dots for the vertices, joined by lines or curves for the edges.” --From Wikipedia
Before I began my project I had to place some restrictions on the possibilities as the QC campus has tons of walking paths and paved areas. When walking on the Queens College campus I’m always wary of walking on dirt or grass as I do not like to dirty up my sneakers. This is the basis for the first very important assumption made in my project that is “You are not allowed to walk on any unpaved areas of campus”. The methods I used to approach the problem would have to be severely modified if not completely thrown out had I not placed this restriction. 

After making this assumption, I took a look at the QC campus map and realized that to map out the campus exactly as it is would be very difficult as there are over 100 walkways and entrances to account for so I created a simplified version of the campus. When I originally decided on this project, I had expected Mathematica to have an easy way of constructing a graph using a sort of drawing tool. Mathematica does have a drawing tool called GraphEdit but this portion of the program is still in development and was not particularly useful to me. In order to make a graph in Mathematica you must first load the Combinatorica library which has most of the functions I needed for my graphs. 

Since I could not draw the graph easily, I had to reconstruct my graph on graph paper and get a coordinate for each and every vertex. Once I had my coordinate list in Mathematica I created a simple graph with 61 vertices exactly in the positions I wanted. I then had to recreate all the edges I had included in my drawing. This is a very tedious process, where I had to come back over and over to make sure all the edges I wanted to see were included in my graph.

Once I had my graph completed. I had to figure out a way for Mathematica to calculate the shortest path between any two points in a graph. Fortunately the Combinatorica has a function that already does this called “ShortestPath”. This is where a second assumption comes into play. Due to the limitations of using a graph to represent a map, I cannot shape my paths exactly as they are in reality. Many of the paths are not straight lines and as of now I only know how to construct a graph using straight lines. Also the actual distances from one point to another are NOT taken into account, unfortunately I do not know how long the paths are nor was I willing to measure them. As a result I decided to consider each edge to have equal length and use Mathematica to simply count the amount of vertices along the way. This severely takes away from the practicality of my program.
Once I figured out how ShortestPath works, I created a manipulate that you lets you adjust the starting point and ending point and highlights the shortest path between them. After playing around with my manipulate, I realized two things. First I realized that it is very slow to adjust when using the slider. Second I realized that if you were to interchange your starting and ending point in some instances you did not get the same path. To address the 1st problem I created a function “shortpath” that saves the results of the ShortestPath function for all my vertices so that It would not have to calculate it each time you move the slider. I then realized that it isn’t the calculation that slows it down but rather Mathematica may be redrawing the graph every time I move the slider. I could not figure out another way to make it any faster. I added a swap button to show how the paths change when the starting and ending points are interchanged but I did not find a way to fix it, although I have some ideas on what I could do. 
The hardest part was figuring out how I would translate my drawing to Mathematica in a way that I can use the functions on it. I’ve come to the conclusion that Mathematica is not the best program to use to address this type of problem. It would probably be better to modify some Google Maps code but that is beyond the scope of this course.
