 SEQ CHAPTER \h \r 1Mathematica Mini-Project: Monte Carlo Algorithms


For this project I wanted to use Mathematica observe the behavior of so-called Monte Carlo algorithms. These are a class of probabilistic algorithms that depend upon random sampling and carry a chance of error. This is why they were named after the famous casino in the European city-state of Monaco. 


A Monte Carlo algorithm returns either “true” or “unknown” in each iteration. If all iterations return “unknown,” we consider this to be equivalent to “false.” There is a possibility that the algorithm will return “unknown” on every iteration (thus concluding with “false”) even though the correct answer to the problem is “true.” But this chance of error decreases rapidly as the number of tests is increased. We can reduce the error percentage to as small as we like by taking a sufficiently large number of iterations but we cannot have an error rate of zero.

I used two examples to work with. The first is based on Aho and Ullman, Foundations of Computer Science. The second is an extension of work done previously in class.

Example 1. 


The XYZ computer company has ordered chips from a manufacturer but believes some boxes of chips were not tested at the factory. If XYZ tries to test every chip in every box, the time and cost involved would be very high. An alterative is to use a Monte Carlo test as follows, assuming that 10% of the chips are bad: If no bad chips are found in a box, declare the box to be good. In this case it is “unknown” whether the box was tested at the factory (because we did not find a bad chip). If we do find a bad chip, the algorithm says it is true that the box was not tested. 

One iteration (testing one chip at random) has a 90% chance of not finding a bad chip. Now, the total probability of two independent probabilistic events occurring is the product of the individual probabilities. So two iterations yields an error of 0.9x0.9 = 81%. Three yields 0.9^3 = 72.9%. In general, the error of declaring a box to be fine when in fact it has a defective chip is 0.9^k where k is the number of tests (number of chips tested at random).  

Graphing this and its derivative shows that if, for example, one would like an error rate of 1%, the change per trial in the error rate will reach 1% before the actual error rate reaches 1%. The number of trials in a situation like this depends on which situation one would like to reach. A very small derivative of error rate means more tests are not economical but it may be the error rate will still be unacceptably high.


The graphs make it obvious that a procedure like iterating .9^k is more beneficial if the beginning error rate is large. However small beginning error rates require fewer iterations to get very close to zero. Note that although trials are a discrete entity, I chose to represent the graphs as lines because it is more intuitive


For this problem I had to learn how to take derivatives in Mathematica as well as how to plot them. In order to use this within a Manipulate function, the derivative (as a function) must be called a name if it has more than one variable. To take the derivative of such a function, you write Derivative[n1, n2. ..][f] where n1 is the number of times to differentiate with respect to the first variable, n2 is for the second variable, and so on, and f is the name of the function. To represent the derivative of a single variable function, simply write f’.  I also learned how to use the Solve function. The syntax is x/.Solve[f[x] == y, x]. This means where f[x] equals y, solve for x.


Example 2. 


Our course notebook has a Monte Carlo approach to finding the value of Pi on page 92. By plotting random points on a quarter circle and taking the ratio of points that lie within the circle to the total number of points and then multiplying this number by four, an approximation to Pi can be reached. 


Originally we plotted the points on a scatterplot but this does not show the behavior of the function (called pie). It merely plots those points that fit within the circle. 

I extended the original work by using histograms and scatterplots to see what happens when the number of random samples increases and what happens when it stays the same but the number of times the function is executed increases. I expected that since the pie function used random numbers every time, it would return a different number every time and therefore iterating this function would increase the number of results close to Pi. I found that this does happen but iteration does not increase the ratio of more accurate results. The graphs did not change dramatically when iterations were increased. However, I found that increasing the sample point number greatly improved the function’s accuracy.

The difference between this example and the first one is that the first one could be manipulated in two ways. Results could be changed by changing the starting error or by changing the number of iterations. But in the Pi problem, it appears that only manipulating the number of random sample points has a beneficial effect. Iterating the function just gives more numbers, not better ones. 


This is due to a fundamental difference between the two problems. The first is simply an exponential function while the second returns a random number defined by 4x[[(random x^2 + random y^2)<1]/(random x^2 + random y^2)] 


I learned to use the Show function here. It displays multiple one grid and is meant to be used with different types of graphs. Any function being graphed must be called a name previously (ie you cannot write Show[ListPlot[F[x]]] but must call ListPlot a function or variable)


So I have used a Monte Carlo approach to solve two very different problems: One where an acceptable error rate must be reached without exhaustive testing and one where the value of Pi can be approximated by random processes. A Monte Carlo algorithm is not a particular algorithm, it is a method of solving a problem by using randomness. Monte Carlo algorithms generally involve the following steps (from Wikipedia, http://en.wikipedia.org/wiki/Monte_Carlo_method)
   1. Define a domain of possible inputs.

   2. Generate inputs randomly from the domain using a certain specified probability distribution.

   3. Perform a deterministic computation using the inputs.

   4. Aggregate the results of the individual computations into the final result.

In terms of my opening paragraph, the error rate of the first example can be made arbitrarily small by iterating a sufficient number of times ie, .9^x. In the second example, the function does not return “unknown” or “true.” The error here is how far a number the pie function returns is from Pi. Like the first example, can make this arbitrarily close to a limit, this time by taking a sufficiently large number of sample points. 

