Zooming and finding intersection points

In this class we are going to be learning how to do calculus without the help of a calculator and also learn how to use a graphing calculator as a tool that will help us understand the calculus more deeply.

Let's find the intersection points of $y=x^{2}+4$ and $y=(x+4)^{2}$. First, let's graph the two functions.

- Type in the equations in the $\mathrm{Y}=$ menu. [When you want to type in ' X ', push the X, T, Θ, n button.]
- Then press the GRAPH button.

You will see the two functions pictured in the standard view, where both the $x-$ and the $y-$ coordinates range from $[-10,10]$.

Reality check: Which function is which?
Push the WINDOW button to see the specifics of the coordinate ranges.
At some times, it is useful to change your viewing window. You can either manually modify the ranges in the WINDOW menu, or use one of the zooming options in the ZOOM menu. Click on the ZOOM button.

- 6: Standard - If at any point you wish to revert back to the $[-10,10] \times[-10,10]$ view, press 6.
- 4: Decimal - I like this view the best. Each pixel now represents 0.1.
- 2: Zoom In and 3: Zoom Out - When you need to zoom in or out on the picture, select 2 or 3 and then push the ENTER button.
- 1: Box Zoom - Use it like a magnifying glass to zoom in on a small area in graph view.

We'll see if we can figure out where the intersection point is. Do a decimal zoom. Now we can't see both graphs, so zoom out. [Hit $\underline{Z O O M}$, then $\underline{3}$, then $\underline{E N T E R}$, We can see both curves.]

Now use the tracing capabilities to follow the curves. Hit the TRACE button. The left and right arrow buttons change the x values and the up and down arrow buttons change the function along which you are tracing.

Practice tracing along both curves and figure out an x value very close to where the curves intersect. Then zoom in. Trace the curves again and figure out where the two curves intersect.

Intersection point:

