Combinatorial Proof Practice

Prove: $\binom{n}{m}\binom{m}{k}=\binom{n}{k}\binom{n-k}{m-k}$ for $0 \leq k \leq m \leq n$.

Prove: $1\binom{n}{1}+2\binom{n}{2}+3\binom{n}{3}+\cdots+n\binom{n}{n}=n 2^{n-1}$.

Prove: $\sum_{k=0}^{n}\binom{n}{k}^{2}=\binom{2 n}{n}$

Small hints

(1) Choose a subcommittee.
(2) Form a committee with a chairperson.
(3) Write $\binom{n}{k}^{2}$ as $\binom{n}{k}\binom{n}{n-k}$.

Break your set of size $2 n$ into two smaller sets. (Color them blue and red, for example.)

Larger-in-use, smaller-in-size hints:

(1) How many ways are there to choose a subcommittee of size k from a committee of size m ?
(2) Given a committee of size k, in how many ways are there to choose a chairperson of the committee?
(3) If you take your set of size $2 n$ and color n elements blue and n elements red, and then choose n elements from the set of size $2 n$, how might those chosen elements break down with respect to the colors?

