MATH 636, Fall 2013

Homework 5
due 5:00pm on Thursday, October 31.
Background reading: Combinatorics: A Guided Tour, Sections 3.3 and 3.5, and pp. 114-115. (Ignore any discussion of Exponential Generating Functions.)
Follow the posted homework guidelines when completing this assignment.
Please only consult with your classmates or professor to discuss the problem set.
5-1. 3.3.2, parts (b), (d), (e), and (f).
5-2. Give a combinatorial counting question whose answer is the coefficient of x^{k} in the generating function

$$
f(x)=\frac{(1+x)^{n}}{(1-x)^{m}}
$$

5-3. Prove that

$$
\sum_{j=2}^{\infty} \frac{1}{\binom{j}{2}}=2
$$

[Yes, the denominator is the binomial coefficient $\binom{j}{2}$.]
[Hint: Write the denominator as a polynomial of j, then use partial fractions.]
5-4. Suppose you roll three six-sided dice. Calculate the probability that the dice sum to fourteen. Now suppose you roll five six-sided dice. Calculate the probability the dice sum to fourteen. Which probability is higher?

Use generating functions to solve this problem. I would also suggest some computer algebra software (Mathematica, Sage, Maple, Wolfram Alpha, etc.).

5-5. 3.5.1(c) and 3.5.1(d).

