Partitions

The Young diagram of $\lambda=\left(\lambda_{1}, \ldots, \lambda_{k}\right)$ has λ_{i} boxes in row i.

Partition

Self-conjugate partition

Partitions

The Young diagram of $\lambda=\left(\lambda_{1}, \ldots, \lambda_{k}\right)$ has λ_{i} boxes in row i. (James, Kerber) Create an abacus diagram from the boundary of λ. Abacus: Function $a: \mathbb{Z} \rightarrow\{\bullet\lrcorner$,$\} .$

Partition

Self-conjugate partition

Partitions

The Young diagram of $\lambda=\left(\lambda_{1}, \ldots, \lambda_{k}\right)$ has λ_{i} boxes in row i. (James, Kerber) Create an abacus diagram from the boundary of λ. Abacus: Function $a: \mathbb{Z} \rightarrow\{\bullet, \iota\}$.

Partitions correspond to abacus diagrams.

$$
\left.\begin{array}{lllllllllllll}
-9 & -8 & -7 & -5 & -4 & -3 & -1 & 0 & 1 & 2 & (3) & 4 & 5 \\
\hline
\end{array}\right)
$$

Partition

Self-conjugate partition

Partitions

The Young diagram of $\lambda=\left(\lambda_{1}, \ldots, \lambda_{k}\right)$ has λ_{i} boxes in row i. (James, Kerber) Create an abacus diagram from the boundary of λ. Abacus: Function $a: \mathbb{Z} \rightarrow\{\bullet\lrcorner$,$\} .$

Partitions correspond to abacus diagrams.
(-6) (-5) (-4) (-3 (-2) (-1) (0) 1 (2) 3 (2) 4

Partition

Self-conjugate partition

Partitions

The Young diagram of $\lambda=\left(\lambda_{1}, \ldots, \lambda_{k}\right)$ has λ_{i} boxes in row i. (James, Kerber) Create an abacus diagram from the boundary of λ. Abacus: Function $a: \mathbb{Z} \rightarrow\{\bullet\lrcorner$,$\} .$
(Equivalence class...)
Partitions correspond to abacus diagrams.

$$
\begin{array}{lllllllllllllll}
(-9) & (-8) & (-6) & (-5) & -4 & (-3 & -2 & -1 & 0 & 1 & 2 & (3) & 4 & (5) & (6) \\
7 & 8 & 9
\end{array}
$$

Partition

Self-conjugate partition

Self-conjugate partitions correspond to anti-symmetric abaci.

$$
\begin{array}{lllllllllllllllll}
(-8) & (-7) & -6) & -5 & (-4) & -3 & -2 & (-1) & (0) & 1 & 2 & (3) & 4 & 5 & (6) & 7 & 8 \\
\hline
\end{array}
$$

Core partitions

The hook length of a box $=\#$ boxes below $+\#$ boxes to right + box λ is a t-core if no boxes have hook length t.
t-core partition

10	6	5	211
7	3	2	
6	2	1	
3			
2			
1			

t-flush abacus

Self-conj. t-core partition

13	9	7		5	3	2	1
9	5			1			
7	3						
5	1						
3							
2							
1							

(Discuss defining beads, reading off hooks....)

Core partitions

The hook length of a box $=\#$ boxes below $+\#$ boxes to right + box λ is a t-core if no boxes have hook length $t \longleftrightarrow t$-flush abacus
t-core partition

10 5 5 2 1			
7	-	2	
6	2	1	
-			
2			
1			

t-flush abacus
(Discuss defining beads, reading off hooks....)

Core partitions

The hook length of a box $=\#$ boxes below $+\#$ boxes to right + box λ is a t-core if no boxes have hook length $t \longleftrightarrow t$-flush abacus
t-core partition

10	(6)	$2{ }^{2} 11$
7	3	
6	2	
3		
2		
1		

t-flush abacus
$\begin{array}{lllllllllllllllll}(-5)(-4) & (-3) & -2 & -1 & 0 & (1) & (2) & (3) & 4 & 5 & (6) & (7) & 8 & 9 & (10) & 11 & 12 \\ 13\end{array}$

Self-conj. t-core partition

(Discuss defining beads, reading off hooks....)

Core partitions

The hook length of a box $=\#$ boxes below $+\#$ boxes to right + box λ is a t-core if no boxes have hook length $t \longleftrightarrow t$-flush abacus
t-core partition

t-flush abacus (in runners)

```
(-5) (-4) (-3)(-2) (-1)}0
```

(-8)	-7	-6	-5
-4	-3	-2	-1
0	1	(2)	3
4	5	(6)	7
8	9	(10)	11

Normalized

Balanced

Self-conj. t-core partition

(Discuss defining beads, reading off hooks....)

Core partitions

The hook length of a box $=\#$ boxes below $+\#$ boxes to right + box λ is a t-core if no boxes have hook length $t \longleftrightarrow t$-flush abacus
t-core partition

10	(6)	5	2 F
7	3	2	
6	2	1	
3			
2			
1			

t-flush abacus (in runners)

```
(-5) (-4) (-3) (-2)(-1)0 (1) (2) (3) 4 5 (6) (7) 8 9 (10) 11 12 13
```


Normalized

Balanced

Self-conj. t-core partition

t-flush antisymmetric abacus

Antisymmetry about $t / t+1$.
(Discuss defining beads, reading off hooks....)

Simultaneity

Of interest: Partitions that are both s-core and t-core. $(s, t)=1$

- Abaci that are both s-flush and t-flush.
(s, t)-core partitions

Self-conj. (s, t)-core partitions

9	6	4	2	1
6	3	1		
4	1			
2				
1				

Simultaneity

Of interest: Partitions that are both s-core and t-core. $(s, t)=1$

- Abaci that are both s-flush and t-flush.

There are infinitely many (self-conjugate) t-core partitions.
(s, t)-core partitions

Self-conj. (s, t)-core partitions

9	6	4	2	1
6	3	1		
4	1			
2				
1				

Simultaneity

Of interest: Partitions that are both s-core and t-core. $(s, t)=1$

- Abaci that are both s-flush and t-flush.

There are infinitely many (self-conjugate) t-core partitions.
(s, t)-core partitions

(Anderson, 2002):
\# (s, t)-core partitions

$$
\frac{1}{s+t}\binom{s+t}{s}
$$

Self-conj. (s, t)-core partitions

9	6	4	2	1
6	3	1		
4	1			
2				
1				

Simultaneity

Of interest: Partitions that are both s-core and t-core. $(s, t)=1$

- Abaci that are both s-flush and t-flush.

There are infinitely many (self-conjugate) t-core partitions.
(s, t)-core partitions

(Anderson, 2002):
\# (s, t)-core partitions

$$
\frac{1}{s+t}\binom{s+t}{s}
$$

Self-conj. (s, t)-core partitions

9	6	4	2	1
6	3	1		
4	1			
2				
1				

(Ford, Mai, Sze, 2009):
\# self-conj. (s, t)-core partitions

$$
\binom{s^{\prime}+t^{\prime}}{s^{\prime}}
$$

where $s^{\prime}=\left\lfloor\frac{s}{2}\right\rfloor$ and $t^{\prime}=\left\lfloor\frac{t}{2}\right\rfloor$

Core partitions in the literature

- Representation Theory: (origin)
- Nakayama conjecture, proved by Brauer \& Robinson 1947 says t-cores label t-blocks of irreducible modular representations for S_{n}.

Core partitions in the literature

- Representation Theory: (origin)
- Nakayama conjecture, proved by Brauer \& Robinson 1947 says t-cores label t-blocks of irreducible modular representations for S_{n}.
- Number Theory:
- Let $c_{t}(n)=\#$ of t-core partitions of n.
\rightarrow In 1976, Olsson proved $\sum_{n \geq 0} c_{t}(n) x^{n}=\prod_{n \geq 1} \frac{\left(1-x^{n t}\right)^{t}}{1-x^{n}}$

Core partitions in the literature

- Representation Theory: (origin)
- Nakayama conjecture, proved by Brauer \& Robinson 1947 says t-cores label t-blocks of irreducible modular representations for S_{n}.
- Number Theory:
- Let $c_{t}(n)=\#$ of t-core partitions of n.
$-\ln$ 1976, Olsson proved $\sum_{n \geq 0} c_{t}(n) x^{n}=\prod_{n \geq 1} \frac{\left(1-x^{n t}\right)^{t}}{1-x^{n}}$
Numerical properties of $c_{t}(n)$?
- 1996: Granville \& Ono proved positivity: $c_{t}(n)>0(t \geq 4)$.
- 1999: Stanton conjectured monotonicity: $c_{t+1}(n) \geq c_{t}(n)$
- 2012: R. Nath \& I conjectured monotonicity: $s c_{t+2}(n) \geq s c_{t}(n)$

Core partitions in the literature

- Representation Theory: (origin)
- Nakayama conjecture, proved by Brauer \& Robinson 1947 says t-cores label t-blocks of irreducible modular representations for S_{n}.
- Number Theory:
- Let $c_{t}(n)=\#$ of t-core partitions of n.
$-\operatorname{In}$ 1976, Olsson proved $\sum_{n \geq 0} c_{t}(n) x^{n}=\prod_{n \geq 1} \frac{\left(1-x^{n t}\right)^{t}}{1-x^{n}}$
Numerical properties of $c_{t}(n)$?
- 1996: Granville \& Ono proved positivity: $c_{t}(n)>0(t \geq 4)$.
- 1999: Stanton conjectured monotonicity: $c_{t+1}(n) \geq c_{t}(n)$
- 2012: R. Nath \& I conjectured monotonicity: $s c_{t+2}(n) \geq s c_{t}(n)$
- Modular forms: g.f. related to Dedekind's η-fcn, a m.f. of wt. $1 / 2$.

Core partitions in the literature

- Representation Theory: (origin)
- Nakayama conjecture, proved by Brauer \& Robinson 1947 says t-cores label t-blocks of irreducible modular representations for S_{n}.
- Number Theory:
- Let $c_{t}(n)=\#$ of t-core partitions of n.
$-\ln$ 1976, Olsson proved $\sum_{n \geq 0} c_{t}(n) x^{n}=\prod_{n \geq 1} \frac{\left(1-x^{n t}\right)^{t}}{1-x^{n}}$
Numerical properties of $c_{t}(n)$?
- 1996: Granville \& Ono proved positivity: $c_{t}(n)>0(t \geq 4)$.
- 1999: Stanton conjectured monotonicity: $c_{t+1}(n) \geq c_{t}(n)$
- 2012: R. Nath \& I conjectured monotonicity: $s c_{t+2}(n) \geq s c_{t}(n)$
- Modular forms: g.f. related to Dedekind's η-fcn, a m.f. of wt. $1 / 2$.
- Group Theory: By Lascoux 2001, t-cores \longleftrightarrow coset reps in $\widetilde{S}_{t} / S_{t}$
Group actions on combinatorial objects!!!!

Reflection Groups

The combinatorics of groups:

- Made up of a set of elements $W=\left\{w_{1}, w_{2}, \ldots\right\}$.
- Multiplication of two elements $w_{1} w_{2}$ stays in the group.

Reflection Groups

The combinatorics of groups:

- Made up of a set of elements $W=\left\{w_{1}, w_{2}, \ldots\right\}$.
- Multiplication of two elements $w_{1} w_{2}$ stays in the group.
- ALTHOUGH, it is not the case that $w_{1} w_{2}=w_{2} w_{1}$.

Reflection Groups

The combinatorics of groups:

- Made up of a set of elements $W=\left\{w_{1}, w_{2}, \ldots\right\}$.
- Multiplication of two elements $w_{1} w_{2}$ stays in the group.
- ALTHOUGH, it is not the case that $w_{1} w_{2}=w_{2} w_{1}$.
- There is an identity element (id) \& Every element has an inverse.
- Think: (Non-zero real numbers) or (invertible $n \times n$ matrices.)

Reflection Groups

The combinatorics of groups:

- Made up of a set of elements $W=\left\{w_{1}, w_{2}, \ldots\right\}$.
- Multiplication of two elements $w_{1} w_{2}$ stays in the group.
- ALTHOUGH, it is not the case that $w_{1} w_{2}=w_{2} w_{1}$.
- There is an identity element (id) \& Every element has an inverse.
- Think: (Non-zero real numbers) or (invertible $n \times n$ matrices.)

We will talk about reflection groups. (With nice pictures)

- W is generated by a set of generators $S=\left\{s_{1}, s_{2}, \ldots, s_{k}\right\}$.
- Along with a set of relations.

Reflection Groups

The combinatorics of groups:

- Made up of a set of elements $W=\left\{w_{1}, w_{2}, \ldots\right\}$.
- Multiplication of two elements $w_{1} w_{2}$ stays in the group.
- ALTHOUGH, it is not the case that $w_{1} w_{2}=w_{2} w_{1}$.
- There is an identity element (id) \& Every element has an inverse.
- Think: (Non-zero real numbers) or (invertible $n \times n$ matrices.)

We will talk about reflection groups. (With nice pictures)

- W is generated by a set of generators $S=\left\{s_{1}, s_{2}, \ldots, s_{k}\right\}$.
- Every $w \in W$ can be written as a product of generators.
- Along with a set of relations.

Reflection Groups

The combinatorics of groups:

- Made up of a set of elements $W=\left\{w_{1}, w_{2}, \ldots\right\}$.
- Multiplication of two elements $w_{1} w_{2}$ stays in the group.
- ALTHOUGH, it is not the case that $w_{1} w_{2}=w_{2} w_{1}$.
- There is an identity element (id) \& Every element has an inverse.
- Think: (Non-zero real numbers) or (invertible $n \times n$ matrices.)

We will talk about reflection groups. (With nice pictures)

- W is generated by a set of generators $S=\left\{s_{1}, s_{2}, \ldots, s_{k}\right\}$.
- Every $w \in W$ can be written as a product of generators.
- Along with a set of relations.
- These are rules to convert between expressions.
- $s_{i}^{2}=\mathrm{id}$. -and- $\left(s_{i} s_{j}\right)^{\text {power }}=\mathrm{id}$.

Reflection Groups

The combinatorics of groups:

- Made up of a set of elements $W=\left\{w_{1}, w_{2}, \ldots\right\}$.
- Multiplication of two elements $w_{1} w_{2}$ stays in the group.
- ALTHOUGH, it is not the case that $w_{1} w_{2}=w_{2} w_{1}$.
- There is an identity element (id) \& Every element has an inverse.
- Think: (Non-zero real numbers) or (invertible $n \times n$ matrices.)

We will talk about reflection groups. (With nice pictures)

- W is generated by a set of generators $S=\left\{s_{1}, s_{2}, \ldots, s_{k}\right\}$.
- Every $w \in W$ can be written as a product of generators.
- Along with a set of relations.
- These are rules to convert between expressions.
- $s_{i}^{2}=\mathrm{id}$. -and- $\left(s_{i} s_{j}\right)^{\text {power }}=\mathrm{id}$.

For example, $w=s_{3} s_{2} s_{1} s_{1} s_{2} s_{4}=s_{3} s_{2}$ id $s_{2} s_{4}=s_{3}$ ids $s_{4}=s_{3} s_{4}$

Reflection Groups

- The action of multiplying (on the left) by a generator s corresponds to a reflection across a hyperplane $H_{s} . \quad\left(s_{i}^{2}=i d\right)$

Reflection Groups

- The action of multiplying (on the left) by a generator s corresponds to a reflection across a hyperplane $H_{s} . \quad\left(s_{i}^{2}=i d\right)$

Reflection Groups

- The action of multiplying (on the left) by a generator s corresponds to a reflection across a hyperplane $H_{s} . \quad\left(s_{i}^{2}=i d\right)$

Reflection Groups

- The action of multiplying (on the left) by a generator s corresponds to a reflection across a hyperplane $H_{s} . \quad\left(s_{i}^{2}=\mathrm{id}\right)$

Reflection Groups

- The action of multiplying (on the left) by a generator s corresponds to a reflection across a hyperplane $H_{s} . \quad\left(s_{i}^{2}=\mathrm{id}\right)$

Reflection Groups

- The action of multiplying (on the left) by a generator s corresponds to a reflection across a hyperplane $H_{s} . \quad\left(s_{i}^{2}=\mathrm{id}\right)$

- When the angle between H_{s} and H_{t} is $\frac{\pi}{3}$, relation is $(s t)^{3}=\mathrm{id}$.

Reflection Groups

- The action of multiplying (on the left) by a generator s corresponds to a reflection across a hyperplane $H_{s} . \quad\left(s_{i}^{2}=\mathrm{id}\right)$

- When the angle between H_{s} and H_{t} is $\frac{\pi}{3}$, relation is $(s t)^{3}=\mathrm{id}$.
- The group depends on the placement of the hyperplanes. $|S|=6$.

Reflection Groups

- The action of multiplying (on the left) by a generator s corresponds to a reflection across a hyperplane $H_{s} . \quad\left(s_{i}^{2}=\mathrm{id}\right)$

- When the angle between H_{s} and H_{t} is $\frac{\pi}{4}$, relation is $(s t)^{4}=\mathrm{id}$.
- The group depends on the placement of the hyperplanes. $|S|=8$.

Reflection Groups

- The action of multiplying (on the left) by a generator s corresponds to a reflection across a hyperplane $H_{s} . \quad\left(s_{i}^{2}=\mathrm{id}\right)$

- When the angle between H_{s} and H_{t} is $\frac{\pi}{5}$, relation is $(s t)^{5}=\mathrm{id}$.
- The group depends on the placement of the hyperplanes. $|S|=10$.

Reflection Groups

- The action of multiplying (on the left) by a generator s corresponds to a reflection across a hyperplane $H_{s} . \quad\left(s_{i}^{2}=\mathrm{id}\right)$

- When the angle between H_{s} and H_{t} is $\frac{\pi}{6}$, relation is $(s t)^{6}=\mathrm{id}$.
- The group depends on the placement of the hyperplanes. $|S|=12$.

Reflection Groups

- The action of multiplying (on the left) by a generator s corresponds to a reflection across a hyperplane $H_{s} . \quad\left(s_{i}^{2}=\mathrm{id}\right)$

- When the angle between H_{s} and H_{t} is $\frac{\pi}{n}$, relation is $(s t)^{n}=\mathrm{id}$.
- The group depends on the placement of the hyperplanes. $|S|=2 n$.

Infinite Reflection Groups

An infinite reflection group: the affine permutations \widetilde{S}_{n}.

Infinite Reflection Groups

An infinite reflection group: the affine permutations \widetilde{S}_{n}.

Infinite Reflection Groups

An infinite reflection group: the affine permutations \widetilde{S}_{n}.

Infinite Reflection Groups

An infinite reflection group: the affine permutations \widetilde{S}_{n}.

- Add a new generator s_{0} and a new affine hyperplane H_{0}.

Infinite Reflection Groups

An infinite reflection group: the affine permutations \widetilde{S}_{n}.

- Add a new generator s_{0} and a new affine hyperplane H_{0}.

Infinite Reflection Groups

An infinite reflection group: the affine permutations \widetilde{S}_{n}.

- Add a new generator s_{0} and a new affine hyperplane H_{0}.

Infinite Reflection Groups

An infinite reflection group: the affine permutations \widetilde{S}_{n}.

- Add a new generator s_{0} and a new affine hyperplane H_{0}.

Infinite Reflection Groups

An infinite reflection group: the affine permutations \widetilde{S}_{n}.

- Add a new generator s_{0} and a new affine hyperplane H_{0}.

Elements generated by $\left\{s_{0}, s_{1}, s_{2}\right\}$ correspond to alcoves here.

Combinatorics of affine permutations

Many ways to reference elements in \widetilde{S}_{n}.

Combinatorics of affine permutations

Many ways to reference elements in \widetilde{S}_{n}.

- Geometry. Point to the alcove.

Combinatorics of affine permutations

Many ways to reference elements in \widetilde{S}_{n}.

- Geometry. Point to the alcove.
- Alcove coordinates. Keep track of how many hyperplanes of each type you have crossed to get to your alcove.

Coordinates:

3	1
1	

Combinatorics of affine permutations

Many ways to reference elements in \widetilde{S}_{n}.

- Geometry. Point to the alcove.
- Alcove coordinates. Keep track of how many hyperplanes of each type you have crossed to get to your alcove.
- Word. Write the element as a (short) product of generators.

Coordinates:

3	1
1	

Word: $s_{0} s_{1} s_{2} s_{1} s_{0}$

Combinatorics of affine permutations

Many ways to reference elements in \widetilde{S}_{n}.

- Geometry. Point to the alcove.
- Alcove coordinates. Keep track of how many hyperplanes of each type you have crossed to get to your alcove.
- Word. Write the element as a (short) product of generators.
- Permutation. Similar to writing finite permutations as 312 .

Coordinates:

3	1
1	

Word: $s_{0} s_{1} s_{2} s_{1} s_{0}$
Permutation:

$$
(-3,2,7)
$$

Combinatorics of affine permutations

Many ways to reference elements in \widetilde{S}_{n}.

- Geometry. Point to the alcove.
- Alcove coordinates. Keep track of how many hyperplanes of each type you have crossed to get to your alcove.
- Word. Write the element as a (short) product of generators.
- Permutation. Similar to writing finite permutations as 312 .
- Abacus diagram. Columns of numbers.

Abacus diagram:

$10 \quad 11 \quad 12$

Combinatorics of affine permutations

Many ways to reference elements in \widetilde{S}_{n}.

- Geometry. Point to the alcove.
- Alcove coordinates. Keep track of how many hyperplanes of each type you have crossed to get to your alcove.
- Word. Write the element as a (short) product of generators.
- Permutation. Similar to writing finite permutations as 312 .
- Abacus diagram. Columns of numbers.

Core partition:

0	1	2	0
2	0		
1			
0			

- Core partition. Hook length condition.

Combinatorics of affine permutations

Many ways to reference elements in \widetilde{S}_{n}.

- Geometry. Point to the alcove.
- Alcove coordinates. Keep track of how many hyperplanes of each type you have crossed to get to your alcove.
- Word. Write the element as a (short) product of generators.
- Permutation. Similar to writing finite permutations as 312 .
- Abacus diagram. Columns of numbers.
- Core partition. Hook length condition.
- Bounded partition. Part size bounded.

Core partition:

0	1	2	0
2	0		
1			
0			

Bounded partition:

0	1
2	
1	
0	

Combinatorics of affine permutations

Many ways to reference elements in \widetilde{S}_{n}.

- Geometry. Point to the alcove.
- Alcove coordinates. Keep track of how many hyperplanes of each type you have crossed to get to your alcove.
- Word. Write the element as a (short) product of generators.
- Permutation. Similar to writing finite permutations as 312 .
- Abacus diagram. Columns of numbers.
- Core partition. Hook length condition.
- Bounded partition. Part size bounded.
- Others! Lattice path, order ideal, etc.

Core partition:

0	1	2	0
2	0		
1			
0			

Bounded partition:

0	1
2	
1	
$y n$	
$y n n$	
y	

Combinatorics of affine permutations

Many ways to reference elements in \widetilde{S}_{n}.

- Geometry. Point to the alcove.
- Alcove coordinates. Keep track of how many hyperplanes of each type you have crossed to get to your alcove.
- Word. Write the element as a (short) product of generators.
- Permutation. Similar to writing finite permutations as 312 .
- Abacus diagram. Columns of numbers.
- Core partition. Hook length condition.
- Bounded partition. Part size bounded.
- Others! Lattice path, order ideal, etc.

They all play nicely with each other.

Core partition:

0	1	2	0
2	0		
1			
0			

Bounded partition:

0	1
2	
1	
$y n$	
$y n n$	
y	

An abacus model for affine permutations

(James and Kerber, 1981) Given an affine permutation [w_{1}, \ldots, w_{n}],

- Place integers in n runners.
- Circled: beads. Empty: gaps
- Create an abacus where each runner has a lowest bead at w_{i}.

Example: $[-4,-3,7,10]$

- Generators act nicely.
- s_{i} interchanges runners $i \leftrightarrow i+1$.
- s_{0} interchanges runners 1 and n (with shifts)

An abacus model for affine permutations

(James and Kerber, 1981) Given an affine permutation [w_{1}, \ldots, w_{n}],

- Place integers in n runners.
- Circled: beads. Empty: gaps
- Create an abacus where each runner has a lowest bead at w_{i}.

- Generators act nicely.
- s_{i} interchanges runners $i \leftrightarrow i+1 .\left(s_{1}: 1 \leftrightarrow 2\right)$
- s_{0} interchanges runners 1 and n (with shifts)

An abacus model for affine permutations

(James and Kerber, 1981) Given an affine permutation [w_{1}, \ldots, w_{n}],

- Place integers in n runners.
- Circled: beads. Empty: gaps
- Create an abacus where each runner has a lowest bead at w_{i}.

- Generators act nicely.
- s_{i} interchanges runners $i \leftrightarrow i+1 .\left(s_{1}: 1 \leftrightarrow 2\right)$
- s_{0} interchanges runners 1 and n (with shifts) $\left(s_{0}: 1 \stackrel{\text { shift }}{\leftrightarrow} 4\right.$)

Action of generators on the core partition

- Label the boxes of λ with residues.
- s_{i} acts by adding or removing boxes with residue i.

Example. $\lambda=(5,3,3,1,1)$ is a 4-core.

- has removable 0 boxes
- has addable 1, 2, 3 boxes.

0	1	2	3	0	1
3	0	1	2	3	0
2	3	0	1	2	3
1	2	3	0	1	2
0	1	2	3	0	1
3	0	1	2	3	0

Action of generators on the core partition

- Label the boxes of λ with residues.
- s_{i} acts by adding or removing boxes with residue i.

Example. $\lambda=(5,3,3,1,1)$ is a 4-core.

- has removable 0 boxes
- has addable 1, 2, 3 boxes.

Idea: We can use this to figure out a word for w.

$$
\begin{aligned}
& \begin{array}{|l|l|l|lll}
\hline 0 & 1 & 2 & 3 & 0 & 1 \\
\hline 3 & 0 & 1 & 2 & 3 & 0 \\
\hline 2 & 3 & 0 & 1 & 2 & 3 \\
\hline 1 & 2 & 3 & 0 & 1 & 2 \\
\hline 0 & 1 & 2 & 3 & 0 & 1 \\
3 & 0 & 1 & 2 & 3 & 0
\end{array} \rightarrow \begin{array}{|l|l|l|lll|}
\hline 0 & 1 & 2 & 3 & 0 & 1 \\
\hline 3 & 0 & 1 & 2 & 3 & 0 \\
\hline 2 & 3 & 0 & 1 & 2 & 3 \\
1 & 2 & 3 & 0 & 1 & 2 \\
0 & 1 & 2 & 3 & 0 & 1 \\
3 & 0 & 1 & 2 & 3 & 0
\end{array} \\
& s_{1} \downarrow \\
& \begin{array}{|l|l|l|l|l|l|}
\hline 0 & 1 & 2 & 3 & 0 & 1 \\
\hline 3 & 0 & 1 & 2 & 3 & 0 \\
\hline 2 & 3 & 0 & 1 & 2 & 3 \\
\hline 1 & 2 & 3 & 0 & 1 & 2 \\
\hline 0 & 1 & 2 & 3 & 0 & 1 \\
\hline 3 & 0 & 1 & 2 & 3 & 0 \\
& & & & & \\
\hline
\end{array}
\end{aligned}
$$

Finding a word for an affine permutation.

Example: The word in S_{4} corresponding to $\lambda=(6,4,4,2,2)$:
$S_{1} S_{0} S_{2} S_{1} S_{3} S_{2} S_{0} S_{3} S_{1} S_{0}$

0	1	2	3	0	1								
3	0	1	2	3	0								
2	3	0	1	2	3								
1	2	3	0	1	2								
0	1	2	3	0	1								
3	0	1	2	3	0	$\quad \xrightarrow{S_{1}} \quad$	0	1	2	3	0	1	
:---	:---	:---	:---	:---	:---	:---							
3	0	1	2	3	0								
2	3	0	1	2	3	S_{0}							
1	2	3	0	1	2								
0	1	2	3	0	1								
3	0	1	2	3	0								

The bijection between cores and alcoves

Simultaneous core partitions

How many partitions are both 2 -cores and 3-cores?

Simultaneous core partitions

How many partitions are both 2-cores and 3-cores? 2.

Simultaneous core partitions

How many partitions are both 2-cores and 3-cores? 2.

How many partitions are both 3 -cores and 4-cores?

Simultaneous core partitions

How many partitions are both 2-cores and 3-cores? 2.

How many partitions are both 3-cores and 4-cores? 5 .

Simultaneous core partitions

How many partitions are both 2 -cores and 3-cores? 2.

How many partitions are both 3-cores and 4-cores? 5 .
How many simultaneous $4 / 5$-cores?

Simultaneous core partitions

How many partitions are both 2 -cores and 3-cores? 2.

How many partitions are both 3-cores and 4-cores? 5 .
How many simultaneous 4/5-cores? 14.

Simultaneous core partitions

How many partitions are both 2 -cores and 3-cores? 2.

How many partitions are both 3 -cores and 4 -cores? 5.
How many simultaneous 4/5-cores? 14.
How many simultaneous 5/6-cores? 42.

Simultaneous core partitions

How many partitions are both 2 -cores and 3-cores? 2.

How many partitions are both 3 -cores and 4 -cores? 5.
How many simultaneous 4/5-cores? 14.
How many simultaneous $5 / 6$-cores? 42.
How many simultaneous $n /(n+1)$-cores?

Simultaneous core partitions

How many partitions are both 2-cores and 3-cores? 2.

How many partitions are both 3 -cores and 4 -cores? 5.
How many simultaneous 4/5-cores? 14.
How many simultaneous $5 / 6$-cores? 42.
How many simultaneous $n /(n+1)$-cores? C_{n} !

Simultaneous core partitions

How many partitions are both 2 -cores and 3-cores? 2.

How many partitions are both 3 -cores and 4 -cores? 5 .
How many simultaneous 4/5-cores? 14.
How many simultaneous $5 / 6$-cores? 42 .
How many simultaneous $n /(n+1)$-cores? C_{n} !
Jaclyn Anderson proved that the number of s / t-cores is $\frac{1}{s+t}\binom{s+t}{s}$.

Simultaneous core partitions

How many partitions are both 2 -cores and 3-cores? 2.

How many partitions are both 3 -cores and 4 -cores? 5 .
How many simultaneous 4/5-cores? 14.
How many simultaneous $5 / 6$-cores? 42 .
How many simultaneous $n /(n+1)$-cores? C_{n} !
Jaclyn Anderson proved that the number of s / t-cores is $\frac{1}{s+t}\binom{s+t}{s}$.
The number of $3 / 7$-cores is $\frac{1}{10}\binom{10}{3}=\frac{1}{10} \frac{10 \cdot 9 \cdot 8}{3 \cdot 2 \cdot 1}=12$.

Simultaneous core partitions

How many partitions are both 2 -cores and 3-cores? 2.

How many partitions are both 3 -cores and 4 -cores? 5 .
How many simultaneous 4/5-cores? 14.
How many simultaneous $5 / 6$-cores? 42 .
How many simultaneous $n /(n+1)$-cores? C_{n} !
Jaclyn Anderson proved that the number of s / t-cores is $\frac{1}{s+t}\binom{s+t}{s}$.
The number of $3 / 7$-cores is $\frac{1}{10}\binom{10}{3}=\frac{1}{10} \frac{10 \cdot 9 \cdot 8}{3 \cdot 2 \cdot 1}=12$.
Fishel-Vazirani proved an alcove interpretation of $n /(m n+1)$-cores.

Simultaneous core partitions

How many partitions are both 2 -cores and 3-cores? 2.

How many partitions are both 3 -cores and 4 -cores? 5 .
How many simultaneous 4/5-cores? 14.
How many simultaneous $5 / 6$-cores? 42 .
How many simultaneous $n /(n+1)$-cores? C_{n} !
Jaclyn Anderson proved that the number of s / t-cores is $\frac{1}{s+t}\binom{s+t}{s}$.
The number of $3 / 7$-cores is $\frac{1}{10}\binom{10}{3}=\frac{1}{10} \frac{10 \cdot 9 \cdot 8}{3 \cdot 2 \cdot 1}=12$.
Fishel-Vazirani proved an alcove interpretation of $n /(m n+1)$-cores.

Research Questions

\star Can we extend combinatorial interps to other reflection groups?

Research Questions

\star Can we extend combinatorial interps to other reflection groups?

- Yes! Involves self-conjugate partitions.

Research Questions

\star Can we extend combinatorial interps to other reflection groups?

- Yes! Involves self-conjugate partitions.
- Article (28 pp) published in Journal of Algebra. (2012)
- Joint with Brant Jones, James Madison University.

Research Questions

\star Can we extend combinatorial interps to other reflection groups?

- Yes! Involves self-conjugate partitions.
- Article (28 pp) published in Journal of Algebra. (2012)
- Joint with Brant Jones, James Madison University.

\star What numerical properties do self-conjugate core partitions have?

Research Questions

\star Can we extend combinatorial interps to other reflection groups?

- Yes! Involves self-conjugate partitions.
- Article (28 pp) published in Journal of Algebra. (2012)
- Joint with Brant Jones, James Madison University.
\star What numerical properties do self-conjugate core partitions have?
- There are more (s.c. $t+2$-cores of n) than (s.c. t-cores of n).

4-cores of 22

6-cores of 22

8-cores of 22

Research Questions

\star Can we extend combinatorial interps to other reflection groups?

- Yes! Involves self-conjugate partitions.
- Article (28 pp) published in Journal of Algebra. (2012)
- Joint with Brant Jones, James Madison University.
\star What numerical properties do self-conjugate core partitions have?
- There are more (s.c. $t+2$-cores of n) than (s.c. t-cores of n).
- Article (17 pp) published in Journal of Number Theory. (2013)

4-cores of 22

6-cores of 22

8-cores of 22

Research Questions

\star Can we extend combinatorial interps to other reflection groups?

- Yes! Involves self-conjugate partitions.
- Article (28 pp) published in Journal of Algebra. (2012)
- Joint with Brant Jones, James Madison University.
\star What numerical properties do self-conjugate core partitions have?
- There are more (s.c. $t+2$-cores of n) than (s.c. t-cores of n).
- Article (17 pp) published in Journal of Number Theory. (2013)
- Joint with Rishi Nath, York College, CUNY.

Research Questions

\star Can we extend combinatorial interps to other reflection groups?

- Yes! Involves self-conjugate partitions.
- Article (28 pp) published in Journal of Algebra. (2012)
- Joint with Brant Jones, James Madison University.
\star What numerical properties do self-conjugate core partitions have?
- There are more (s.c. $t+2$-cores of n) than (s.c. t-cores of n).
- Article (17 pp) published in Journal of Number Theory. (2013)
- Joint with Rishi Nath, York College, CUNY.
\star Properties of simultaneous core partitions. (Formula: $\frac{1}{s+t}\binom{s+t}{s}$)

Research Questions

\star Can we extend combinatorial interps to other reflection groups?

- Yes! Involves self-conjugate partitions.
- Article (28 pp) published in Journal of Algebra. (2012)
- Joint with Brant Jones, James Madison University.
\star What numerical properties do self-conjugate core partitions have?
- There are more (s.c. $t+2$-cores of n) than (s.c. t-cores of n).
- Article (17 pp) published in Journal of Number Theory. (2013)
- Joint with Rishi Nath, York College, CUNY.
\star Properties of simultaneous core partitions. (Formula: $\frac{1}{s+t}\binom{s+t}{s}$)
- Question. What is the average size of an (s, t)-core partition?

Research Questions

\star Can we extend combinatorial interps to other reflection groups?

- Yes! Involves self-conjugate partitions.
- Article (28 pp) published in Journal of Algebra. (2012)
- Joint with Brant Jones, James Madison University.
\star What numerical properties do self-conjugate core partitions have?
- There are more (s.c. $t+2$-cores of n) than (s.c. t-cores of n).
- Article (17 pp) published in Journal of Number Theory. (2013)
- Joint with Rishi Nath, York College, CUNY.
\star Properties of simultaneous core partitions. (Formula: $\frac{1}{s+t}\binom{s+t}{s}$)
- Question. What is the average size of an (s, t)-core partition?
- Progress: Answer: $(s+t+1)(s-1)(t-1) / 24$. Proof?

Research Questions

\star Can we extend combinatorial interps to other reflection groups?

- Yes! Involves self-conjugate partitions.
- Article (28 pp) published in Journal of Algebra. (2012)
- Joint with Brant Jones, James Madison University.
\star What numerical properties do self-conjugate core partitions have?
- There are more (s.c. $t+2$-cores of n) than (s.c. t-cores of n).
- Article (17 pp) published in Journal of Number Theory. (2013)
- Joint with Rishi Nath, York College, CUNY.
\star Properties of simultaneous core partitions. (Formula: $\frac{1}{s+t}\binom{s+t}{s}$)
- Question. What is the average size of an (s, t)-core partition?
- Progress: Answer: $(s+t+1)(s-1)(t-1) / 24$. Proof?
- Question: Is there a core statistic for a q-analog of $\frac{1}{s+t}\binom{s+t}{s}$?

Research Questions

\star Can we extend combinatorial interps to other reflection groups?

- Yes! Involves self-conjugate partitions.
- Article (28 pp) published in Journal of Algebra. (2012)
- Joint with Brant Jones, James Madison University.
\star What numerical properties do self-conjugate core partitions have?
- There are more (s.c. $t+2$-cores of n) than (s.c. t-cores of n).
- Article (17 pp) published in Journal of Number Theory. (2013)
- Joint with Rishi Nath, York College, CUNY.
\star Properties of simultaneous core partitions. (Formula: $\frac{1}{s+t}\binom{s+t}{s}$)
- Question. What is the average size of an (s, t)-core partition?
- Progress: Answer: $(s+t+1)(s-1)(t-1) / 24$. Proof?
- Question: Is there a core statistic for a q-analog of $\frac{1}{s+t}\binom{s+t}{s}$?
- Progress: m-Catalan number C_{3} through ($3,3 m+1$)-cores.

Research Questions

\star Can we extend combinatorial interps to other reflection groups?

- Yes! Involves self-conjugate partitions.
- Article (28 pp) published in Journal of Algebra. (2012)
- Joint with Brant Jones, James Madison University.
\star What numerical properties do self-conjugate core partitions have?
- There are more (s.c. $t+2$-cores of n) than (s.c. t-cores of n).
- Article (17 pp) published in Journal of Number Theory. (2013)
- Joint with Rishi Nath, York College, CUNY.
\star Properties of simultaneous core partitions. (Formula: $\frac{1}{s+t}\binom{s+t}{s}$)
- Question. What is the average size of an (s, t)-core partition?
- Progress: Answer: $(s+t+1)(s-1)(t-1) / 24$. Proof?
- Question: Is there a core statistic for a q-analog of $\frac{1}{s+t}\binom{s+t}{s}$?
- Progress: m-Catalan number C_{3} through $(3,3 m+1)$-cores.
- (s, t)-cores \longleftrightarrow certain lattice paths. Statistics galore!

Research Questions

\star Can we extend combinatorial interps to other reflection groups?

- Yes! Involves self-conjugate partitions.
- Article (28 pp) published in Journal of Algebra. (2012)
- Joint with Brant Jones, James Madison University.
\star What numerical properties do self-conjugate core partitions have?
- There are more (s.c. $t+2$-cores of n) than (s.c. t-cores of n).
- Article (17 pp) published in Journal of Number Theory. (2013)
- Joint with Rishi Nath, York College, CUNY.
\star Properties of simultaneous core partitions. (Formula: $\frac{1}{s+t}\binom{s+t}{s}$)
- Question. What is the average size of an (s, t)-core partition?
- Progress: Answer: $(s+t+1)(s-1)(t-1) / 24$. Proof?
- Question: Is there a core statistic for a q-analog of $\frac{1}{s+t}\binom{s+t}{s}$?
- Progress: m-Catalan number C_{3} through ($3,3 m+1$)-cores.
- (s, t)-cores \longleftrightarrow certain lattice paths. Statistics galore!
\star Happy to have students who would like to do research!

Course Evaluation

Please comment on:

- Prof. Chris's effectiveness as a teacher.
- Prof. Chris's contribution to your learning.
- The course material: What you enjoyed and/or found challenging.
- Is there anything you would change about the course?
- How did the reality of the course compare to your expectations?
- Is there anything else Prof. Chris should know?

Place completed evaluations in the provided folder.

