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Partitions

The Young diagram of λ = (λ1, . . . , λk) has λi boxes in row i .

(James, Kerber) Create an abacus diagram from the boundary of λ.

Abacus: Function a : Z→ {•, }. (Equivalence class...)

Partitions correspond to abacus diagrams.
-9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9

Partition Self-conjugate partition

Self-conjugate partitions correspond to anti-symmetric abaci.

-8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9
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Core partitions

The hook length of a box = # boxes below + # boxes to right + box

λ is a t-core if no boxes have hook length t.
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(Discuss defining beads, reading off hooks....)
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Simultaneity

Of interest: Partitions that are both s-core and t-core. (s, t) = 1
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◮ Abaci that are both s-flush and t-flush.

There are infinitely many (self-conjugate) t-core partitions.

(s, t)-core partitions

9 6 5 3 2 1

5 2 1
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(Anderson, 2002):
# (s, t)-core partitions

1
s+t

(
s+t
s

)

Self-conj. (s, t)-core partitions
9 6 4 2 1

6 3 1

4 1

2

1

(Ford, Mai, Sze, 2009):
# self-conj. (s, t)-core partitions(

s′+t′

s′

)

where s ′ =
⌊
s
2

⌋
and t ′ =

⌊
t
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⌋
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◮ Representation Theory: (origin)
◮ Nakayama conjecture, proved by Brauer & Robinson 1947 says

t-cores label t-blocks of irreducible modular representations for Sn.

◮ Number Theory:
◮ Let ct(n) = # of t-core partitions of n.

◮ In 1976, Olsson proved
∑

n≥0

ct(n)x
n =

∏

n≥1

(1 − xnt)t

1− xn

Numerical properties of ct(n)?

◮ 1996: Granville & Ono proved positivity: ct(n) > 0 (t ≥ 4).
◮ 1999: Stanton conjectured monotonicity: ct+1(n) ≥ ct(n)
◮ 2012: R. Nath & I conjectured monotonicity: sct+2(n) ≥ sct(n)

◮ Modular forms: g.f. related to
Dedekind’s η-fcn, a m.f. of wt. 1/2.

◮ Group Theory: By Lascoux 2001,
t-cores ←→ coset reps in S̃ t/St
Group actions on combinatorial objects!!!!

elements of
A
�

� A

window
notation

abacus
diagram

core
partition

root lattice
point

bounded
partition

reduced
expression

@-4,-3,7,10D

H-1,2,1,-2L

s1s0s2s3s1s0s2s3s1s0
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Reflection Groups

The combinatorics of groups:

◮ Made up of a set of elements W = {w1,w2, . . .}.

◮ Multiplication of two elements w1w2 stays in the group.

◮ ALTHOUGH, it is not the case that w1w2 = w2w1.

◮ There is an identity element (id) & Every element has an inverse.

◮ Think: (Non-zero real numbers) or (invertible n× n matrices.)

We will talk about reflection groups. (With nice pictures)

◮ W is generated by a set of generators S = {s1, s2, . . . , sk}.

◮ Every w ∈W can be written as a product of generators.

◮ Along with a set of relations.

◮ These are rules to convert between expressions.
◮ s2i = id. —and— (si sj)

power = id.

For example, w = s3s2s1s1s2s4 = s3s2ids2s4 = s3ids4 = s3s4
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Reflection Groups

◮ The action of multiplying (on the left) by a generator s
corresponds to a reflection across a hyperplane Hs . (s2i = id)

s

t

◮ When the angle between Hs and Ht is
π

n
, relation is (st)n = id.

◮ The group depends on the placement of the hyperplanes. |S |=2n.
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Infinite Reflection Groups

An infinite reflection group: the affine permutations S̃n.

◮ Add a new generator s0 and a new affine hyperplane H0.

s1

s2

s0

Elements generated by {s0, s1, s2} correspond to alcoves here.
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Coordinates:

3 1

1

Word: s0s1s2s1s0

Permutation:

(−3, 2, 7)
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Combinatorics of affine permutations

Many ways to reference elements in S̃n.

◮ Geometry. Point to the alcove.

◮ Alcove coordinates. Keep track of
how many hyperplanes of each type
you have crossed to get to your alcove.

◮ Word. Write the element as a
(short) product of generators.

◮ Permutation. Similar to writing
finite permutations as 312.

◮ Abacus diagram. Columns of numbers.

H1

H2

H0

Abacus diagram:

10

7

4

1

-2

-5

-8

11

8

5

2

-1

-4

-7

12

9

6

3

0

-3

-6
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H1

H2

H0

Core partition:
0 1 2 0
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(short) product of generators.

◮ Permutation. Similar to writing
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Combinatorics of affine permutations

Many ways to reference elements in S̃n.

◮ Geometry. Point to the alcove.

◮ Alcove coordinates. Keep track of
how many hyperplanes of each type
you have crossed to get to your alcove.

◮ Word. Write the element as a
(short) product of generators.

◮ Permutation. Similar to writing
finite permutations as 312.

◮ Abacus diagram. Columns of numbers.

◮ Core partition. Hook length condition.

◮ Bounded partition. Part size bounded.

◮ Others! Lattice path, order ideal, etc.

They all play nicely with each other.

H1

H2

H0

Core partition:
0 1 2 0

2 0

1

0

Bounded partition:
0 1

2

1

0
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An abacus model for affine permutations

(James and Kerber, 1981) Given an affine permutation [w1, . . . ,wn],

◮ Place integers in n runners.

◮ Circled: beads. Empty: gaps

◮ Create an abacus where each
runner has a lowest bead at wi .

Example: [−4,−3, 7, 10]
17

13

9

5

1

- 3

-7

-11

-15

18

14

10

6

2

-2

-6

-10

-14

19

15

11

7

3

-1

-5

-9

-13

20

16

12

8

4

0

- 4

-8

-12

◮ Generators act nicely.

◮ si interchanges runners i ↔ i + 1.

◮ s0 interchanges runners 1 and n (with shifts)
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(James and Kerber, 1981) Given an affine permutation [w1, . . . ,wn],

◮ Place integers in n runners.

◮ Circled: beads. Empty: gaps

◮ Create an abacus where each
runner has a lowest bead at wi .

Example: [−4,−3, 7, 10]
17

13

9

5

1

- 3

-7

-11

-15

18

14

10

6

2

-2

-6

-10

-14

19

15

11

7

3

-1

-5

-9

-13

20

16
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8

4

0

- 4

-8
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s1→

17

13

9

5

1

-3

-7

-11

-15

18

14

10

6

2

- 2

-6

-10

-14

19

15

11

7

3

-1

-5

-9

-13

20

16

12

8

4

0

- 4

-8

-12

◮ Generators act nicely.

◮ si interchanges runners i ↔ i + 1. (s1 : 1↔ 2)

◮ s0 interchanges runners 1 and n (with shifts)
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An abacus model for affine permutations

(James and Kerber, 1981) Given an affine permutation [w1, . . . ,wn],

◮ Place integers in n runners.

◮ Circled: beads. Empty: gaps

◮ Create an abacus where each
runner has a lowest bead at wi .

Example: [−4,−3, 7, 10]
17

13

9

5

1

- 3

-7

-11

-15

18

14

10

6

2

-2

-6

-10

-14

19

15

11

7

3

-1

-5

-9

-13

20

16

12

8

4

0

- 4

-8

-12

s1→

17

13

9

5

1

-3

-7

-11

-15

18

14

10

6

2

- 2

-6

-10

-14

19

15

11

7

3

-1

-5

-9

-13

20

16

12

8

4

0

- 4

-8

-12

s0→

17

13

9

5

1

- 3

-7

-11

-15

18

14

10

6

2

- 2

-6

-10

-14

19

15

11

7

3

-1

-5

-9

-13

20

16

12

8

4

0

-4

-8

-12

◮ Generators act nicely.

◮ si interchanges runners i ↔ i + 1. (s1 : 1↔ 2)

◮ s0 interchanges runners 1 and n (with shifts) (s0 : 1
shift
↔ 4)
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Action of generators on the core partition

◮ Label the boxes of λ with residues.

◮ si acts by adding or removing boxes
with residue i .

0 1 2 3 0 1

3 0 1 2 3 0

2 3 0 1 2 3

1 2 3 0 1 2

0 1 2 3 0 1

3 0 1 2 3 0

Example. λ = (5, 3, 3, 1, 1) is a 4-core.

◮ has removable 0 boxes

◮ has addable 1, 2, 3 boxes.

s2

0 1 2 3 0 1
3 0 1 2 3 0
2 3 0 1 2 3
1 2 3 0 1 2
0 1 2 3 0 1
3 0 1 2 3 0

s0→

0 1 2 3 0 1
3 0 1 2 3 0
2 3 0 1 2 3
1 2 3 0 1 2
0 1 2 3 0 1
3 0 1 2 3 0

s1 ↓ ց
0 1 2 3 0 1
3 0 1 2 3 0
2 3 0 1 2 3
1 2 3 0 1 2
0 1 2 3 0 1
3 0 1 2 3 0

0 1 2 3 0 1
3 0 1 2 3 0
2 3 0 1 2 3
1 2 3 0 1 2
0 1 2 3 0 1
3 0 1 2 3 0
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Action of generators on the core partition

◮ Label the boxes of λ with residues.

◮ si acts by adding or removing boxes
with residue i .

0 1 2 3 0 1

3 0 1 2 3 0

2 3 0 1 2 3

1 2 3 0 1 2

0 1 2 3 0 1

3 0 1 2 3 0

Example. λ = (5, 3, 3, 1, 1) is a 4-core.

◮ has removable 0 boxes

◮ has addable 1, 2, 3 boxes.

s2

0 1 2 3 0 1
3 0 1 2 3 0
2 3 0 1 2 3
1 2 3 0 1 2
0 1 2 3 0 1
3 0 1 2 3 0

s0→

0 1 2 3 0 1
3 0 1 2 3 0
2 3 0 1 2 3
1 2 3 0 1 2
0 1 2 3 0 1
3 0 1 2 3 0

s1 ↓ ց
0 1 2 3 0 1
3 0 1 2 3 0
2 3 0 1 2 3
1 2 3 0 1 2
0 1 2 3 0 1
3 0 1 2 3 0

0 1 2 3 0 1
3 0 1 2 3 0
2 3 0 1 2 3
1 2 3 0 1 2
0 1 2 3 0 1
3 0 1 2 3 0

Idea: We can use this to
figure out a word for w .
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Finding a word for an affine permutation.

Example: The word in S4
corresponding to λ = (6, 4, 4, 2, 2):

s1s0s2s1s3s2s0s3s1s0

0 1 2 3 0 1

3 0 1 2 3 0

2 3 0 1 2 3

1 2 3 0 1 2

0 1 2 3 0 1

3 0 1 2 3 0

s1→

0 1 2 3 0 1

3 0 1 2 3 0

2 3 0 1 2 3

1 2 3 0 1 2

0 1 2 3 0 1

3 0 1 2 3 0

s0→

0 1 2 3 0 1

3 0 1 2 3 0

2 3 0 1 2 3

1 2 3 0 1 2

0 1 2 3 0 1

3 0 1 2 3 0

s2→

0 1 2 3 0 1

3 0 1 2 3 0

2 3 0 1 2 3

1 2 3 0 1 2

0 1 2 3 0 1

3 0 1 2 3 0

s1→

0 1 2 3 0 1

3 0 1 2 3 0

2 3 0 1 2 3

1 2 3 0 1 2

0 1 2 3 0 1

3 0 1 2 3 0

s3→

0 1 2 3 0 1

3 0 1 2 3 0

2 3 0 1 2 3

1 2 3 0 1 2

0 1 2 3 0 1

3 0 1 2 3 0

s2→

0 1 2 3 0 1

3 0 1 2 3 0

2 3 0 1 2 3

1 2 3 0 1 2

0 1 2 3 0 1

3 0 1 2 3 0

s0→

0 1 2 3 0 1

3 0 1 2 3 0

2 3 0 1 2 3

1 2 3 0 1 2

0 1 2 3 0 1

3 0 1 2 3 0

s3→

0 1 2 3 0 1

3 0 1 2 3 0

2 3 0 1 2 3

1 2 3 0 1 2

0 1 2 3 0 1

3 0 1 2 3 0

s1→

0 1 2 3 0 1

3 0 1 2 3 0

2 3 0 1 2 3

1 2 3 0 1 2

0 1 2 3 0 1

3 0 1 2 3 0

s0→

0 1 2 3 0 1

3 0 1 2 3 0

2 3 0 1 2 3

1 2 3 0 1 2

0 1 2 3 0 1

3 0 1 2 3 0
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The bijection between cores and alcoves

0 1
0 1 2 0

2 0

0 1 2 0 1 2

2 0 1 2

1 2

0 1 2 0 1 2 0 1

2 0 1 2 0 1

1 2 0 1

0 1

0

2

0 1 2

2

1

0 1 2 0 1

2 0 1

1

0

0 1 2 0 1 2 0

2 0 1 2 0

1 2 0

0

2

0 1

2 0

1

0

0 1 2 0

2 0

1 2

0

2

0 1 2 0 1 2

2 0 1 2

1 2

0 1

2

1

0 1 2

2 0 1

1 2

0 1

2

1

0 1 2 0 1

2 0 1

1 2 0

0 1

2 0

1

0

0 1 2 0

2 0 1 2

1 2 0

0 1 2

2 0

1 2

0

2

0
0 1 2

2

0 1 2 0 1

2 0 1

1

0 1 2 0 1 2 0

2 0 1 2 0

1 2 0

0

0 1

2

1

0 1 2 0

2 0

1

0

0 1 2 0 1 2

2 0 1 2

1 2

0

2

0 1 2

2 0

1 2

0

2

0 1 2 0 1

2 0 1

1 2

0 1

2

1

0 1 2 0

2 0 1

1 2 0

0 1

2 0

1

0
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Simultaneous core partitions

How many partitions are both 2-cores and 3-cores?

0 1
0 1 2 0

2 0

0 1 2 0 1 2

2 0 1 2

1 2

0 1 2 0 1 2 0 1

2 0 1 2 0 1

1 2 0 1

0 1

0

2

0 1 2

2

1

0 1 2 0 1

2 0 1

1

0

0 1 2 0 1 2 0

2 0 1 2 0

1 2 0

0

2

0 1

2 0

1

0

0 1 2 0

2 0

1 2

0

2

0 1 2 0 1 2

2 0 1 2

1 2

0 1

2

1

0 1 2

2 0 1

1 2

0 1

2

1

0 1 2 0 1

2 0 1

1 2 0

0 1

2 0

1

0

0 1 2 0

2 0 1 2

1 2 0

0 1 2

2 0

1 2

0

2

0
0 1 2

2

0 1 2 0 1

2 0 1

1

0 1 2 0 1 2 0

2 0 1 2 0

1 2 0

0

0 1

2

1

0 1 2 0

2 0

1

0

0 1 2 0 1 2

2 0 1 2

1 2

0

2

0 1 2

2 0

1 2

0

2

0 1 2 0 1

2 0 1

1 2

0 1

2

1

0 1 2 0

2 0 1

1 2 0

0 1

2 0

1

0
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Simultaneous core partitions

How many partitions are both 2-cores and 3-cores? 2.

0 1
0 1 2 0

2 0

0 1 2 0 1 2

2 0 1 2

1 2

0 1 2 0 1 2 0 1

2 0 1 2 0 1

1 2 0 1

0 1

0

2

0 1 2

2

1

0 1 2 0 1

2 0 1

1

0

0 1 2 0 1 2 0

2 0 1 2 0

1 2 0

0

2

0 1

2 0

1

0

0 1 2 0

2 0

1 2

0

2

0 1 2 0 1 2

2 0 1 2

1 2

0 1

2

1

0 1 2

2 0 1

1 2

0 1

2

1

0 1 2 0 1

2 0 1

1 2 0

0 1

2 0

1

0

0 1 2 0

2 0 1 2

1 2 0

0 1 2

2 0

1 2

0

2

0
0 1 2

2

0 1 2 0 1

2 0 1

1

0 1 2 0 1 2 0

2 0 1 2 0

1 2 0

0

0 1

2

1

0 1 2 0

2 0

1

0

0 1 2 0 1 2

2 0 1 2

1 2

0

2

0 1 2

2 0

1 2

0

2

0 1 2 0 1

2 0 1

1 2

0 1

2

1

0 1 2 0

2 0 1

1 2 0

0 1

2 0

1

0
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Simultaneous core partitions

How many partitions are both 2-cores and 3-cores? 2.

0 1
0 1 2 0

2 0

0 1 2 0 1 2

2 0 1 2

1 2

0 1 2 0 1 2 0 1

2 0 1 2 0 1

1 2 0 1

0 1

0

2

0 1 2

2

1

0 1 2 0 1

2 0 1

1

0

0 1 2 0 1 2 0

2 0 1 2 0

1 2 0

0

2

0 1

2 0

1

0

0 1 2 0

2 0

1 2

0

2

0 1 2 0 1 2

2 0 1 2

1 2

0 1

2

1

0 1 2

2 0 1

1 2

0 1

2

1

0 1 2 0 1

2 0 1

1 2 0

0 1

2 0

1

0

0 1 2 0

2 0 1 2

1 2 0

0 1 2

2 0

1 2

0

2

0
0 1 2

2

0 1 2 0 1

2 0 1

1

0 1 2 0 1 2 0

2 0 1 2 0

1 2 0

0

0 1

2

1

0 1 2 0

2 0

1

0

0 1 2 0 1 2

2 0 1 2

1 2

0

2

0 1 2

2 0

1 2

0

2

0 1 2 0 1

2 0 1

1 2

0 1

2

1

0 1 2 0

2 0 1

1 2 0

0 1

2 0

1

0

How many partitions are both 3-cores and 4-cores?
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Simultaneous core partitions

How many partitions are both 2-cores and 3-cores? 2.

0 1
0 1 2 0

2 0

0 1 2 0 1 2

2 0 1 2

1 2

0 1 2 0 1 2 0 1

2 0 1 2 0 1

1 2 0 1

0 1

0

2

0 1 2

2

1

0 1 2 0 1

2 0 1

1

0

0 1 2 0 1 2 0

2 0 1 2 0

1 2 0

0

2

0 1

2 0

1

0

0 1 2 0

2 0

1 2

0

2

0 1 2 0 1 2

2 0 1 2

1 2

0 1

2

1

0 1 2

2 0 1

1 2

0 1

2

1

0 1 2 0 1

2 0 1

1 2 0

0 1

2 0

1

0

0 1 2 0

2 0 1 2

1 2 0

0 1 2

2 0

1 2

0

2

0
0 1 2

2

0 1 2 0 1

2 0 1

1

0 1 2 0 1 2 0

2 0 1 2 0

1 2 0

0

0 1

2

1

0 1 2 0

2 0

1

0

0 1 2 0 1 2

2 0 1 2

1 2

0

2

0 1 2

2 0

1 2

0

2

0 1 2 0 1

2 0 1

1 2

0 1

2

1

0 1 2 0

2 0 1

1 2 0

0 1

2 0

1

0

How many partitions are both 3-cores and 4-cores? 5.
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Simultaneous core partitions

How many partitions are both 2-cores and 3-cores? 2.

0 1
0 1 2 0

2 0

0 1 2 0 1 2

2 0 1 2

1 2

0 1 2 0 1 2 0 1

2 0 1 2 0 1

1 2 0 1

0 1

0

2

0 1 2

2

1

0 1 2 0 1

2 0 1

1

0

0 1 2 0 1 2 0

2 0 1 2 0

1 2 0

0

2

0 1

2 0

1

0

0 1 2 0

2 0

1 2

0

2

0 1 2 0 1 2

2 0 1 2

1 2

0 1

2

1

0 1 2

2 0 1

1 2

0 1

2

1

0 1 2 0 1

2 0 1

1 2 0

0 1

2 0

1

0

0 1 2 0

2 0 1 2

1 2 0

0 1 2

2 0

1 2

0

2

0
0 1 2

2

0 1 2 0 1

2 0 1

1

0 1 2 0 1 2 0

2 0 1 2 0

1 2 0

0

0 1

2

1

0 1 2 0

2 0

1

0

0 1 2 0 1 2

2 0 1 2

1 2

0

2

0 1 2

2 0

1 2

0

2

0 1 2 0 1

2 0 1

1 2

0 1

2

1

0 1 2 0

2 0 1

1 2 0

0 1

2 0

1

0

How many partitions are both 3-cores and 4-cores? 5.
How many simultaneous 4/5-cores?
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Simultaneous core partitions

How many partitions are both 2-cores and 3-cores? 2.

0 1
0 1 2 0

2 0

0 1 2 0 1 2

2 0 1 2

1 2

0 1 2 0 1 2 0 1

2 0 1 2 0 1

1 2 0 1

0 1

0

2

0 1 2

2

1

0 1 2 0 1

2 0 1

1

0

0 1 2 0 1 2 0

2 0 1 2 0

1 2 0

0

2

0 1

2 0

1

0

0 1 2 0

2 0

1 2

0

2

0 1 2 0 1 2

2 0 1 2

1 2

0 1

2

1

0 1 2

2 0 1

1 2

0 1

2

1

0 1 2 0 1

2 0 1

1 2 0

0 1

2 0

1

0

0 1 2 0

2 0 1 2

1 2 0

0 1 2

2 0

1 2

0

2

0
0 1 2

2

0 1 2 0 1

2 0 1

1

0 1 2 0 1 2 0

2 0 1 2 0

1 2 0

0

0 1

2

1

0 1 2 0

2 0

1

0

0 1 2 0 1 2

2 0 1 2

1 2

0

2

0 1 2

2 0

1 2

0

2

0 1 2 0 1

2 0 1

1 2

0 1

2

1

0 1 2 0

2 0 1

1 2 0

0 1

2 0

1

0

How many partitions are both 3-cores and 4-cores? 5.
How many simultaneous 4/5-cores? 14.
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Simultaneous core partitions

How many partitions are both 2-cores and 3-cores? 2.

0 1
0 1 2 0

2 0

0 1 2 0 1 2

2 0 1 2

1 2

0 1 2 0 1 2 0 1

2 0 1 2 0 1

1 2 0 1

0 1

0

2

0 1 2

2

1

0 1 2 0 1

2 0 1

1

0

0 1 2 0 1 2 0

2 0 1 2 0

1 2 0

0

2

0 1

2 0

1

0

0 1 2 0

2 0

1 2

0

2

0 1 2 0 1 2

2 0 1 2

1 2

0 1

2

1

0 1 2

2 0 1

1 2

0 1

2

1

0 1 2 0 1

2 0 1

1 2 0

0 1

2 0

1

0

0 1 2 0

2 0 1 2

1 2 0

0 1 2

2 0

1 2

0

2

0
0 1 2

2

0 1 2 0 1

2 0 1

1

0 1 2 0 1 2 0

2 0 1 2 0

1 2 0

0

0 1

2

1

0 1 2 0

2 0

1

0

0 1 2 0 1 2

2 0 1 2

1 2

0

2

0 1 2

2 0

1 2

0

2

0 1 2 0 1

2 0 1

1 2

0 1

2

1

0 1 2 0

2 0 1

1 2 0

0 1

2 0

1

0

How many partitions are both 3-cores and 4-cores? 5.
How many simultaneous 4/5-cores? 14.
How many simultaneous 5/6-cores? 42.
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Simultaneous core partitions

How many partitions are both 2-cores and 3-cores? 2.

0 1
0 1 2 0

2 0

0 1 2 0 1 2

2 0 1 2

1 2

0 1 2 0 1 2 0 1

2 0 1 2 0 1

1 2 0 1

0 1

0

2

0 1 2

2

1

0 1 2 0 1

2 0 1

1

0

0 1 2 0 1 2 0

2 0 1 2 0

1 2 0

0

2

0 1

2 0

1

0

0 1 2 0

2 0

1 2

0

2

0 1 2 0 1 2

2 0 1 2

1 2

0 1

2

1

0 1 2

2 0 1

1 2

0 1

2

1

0 1 2 0 1

2 0 1

1 2 0

0 1

2 0

1

0

0 1 2 0

2 0 1 2

1 2 0

0 1 2

2 0

1 2

0

2

0
0 1 2

2

0 1 2 0 1

2 0 1

1

0 1 2 0 1 2 0

2 0 1 2 0

1 2 0

0

0 1

2

1

0 1 2 0

2 0

1

0

0 1 2 0 1 2

2 0 1 2

1 2

0

2

0 1 2

2 0

1 2

0

2

0 1 2 0 1

2 0 1

1 2

0 1

2

1

0 1 2 0

2 0 1

1 2 0

0 1

2 0

1

0

How many partitions are both 3-cores and 4-cores? 5.
How many simultaneous 4/5-cores? 14.
How many simultaneous 5/6-cores? 42.
How many simultaneous n/(n + 1)-cores?
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Simultaneous core partitions

How many partitions are both 2-cores and 3-cores? 2.

0 1
0 1 2 0

2 0

0 1 2 0 1 2

2 0 1 2

1 2

0 1 2 0 1 2 0 1

2 0 1 2 0 1

1 2 0 1

0 1

0

2

0 1 2

2

1

0 1 2 0 1

2 0 1

1

0

0 1 2 0 1 2 0

2 0 1 2 0

1 2 0

0

2

0 1

2 0

1

0

0 1 2 0

2 0

1 2

0

2

0 1 2 0 1 2

2 0 1 2

1 2

0 1

2

1

0 1 2

2 0 1

1 2

0 1

2

1

0 1 2 0 1

2 0 1

1 2 0

0 1

2 0

1

0

0 1 2 0

2 0 1 2

1 2 0

0 1 2

2 0

1 2

0

2

0
0 1 2

2

0 1 2 0 1

2 0 1

1

0 1 2 0 1 2 0

2 0 1 2 0

1 2 0

0

0 1

2

1

0 1 2 0

2 0

1

0

0 1 2 0 1 2

2 0 1 2

1 2

0

2

0 1 2

2 0

1 2

0

2

0 1 2 0 1

2 0 1

1 2

0 1

2

1

0 1 2 0

2 0 1

1 2 0

0 1

2 0

1

0

How many partitions are both 3-cores and 4-cores? 5.
How many simultaneous 4/5-cores? 14.
How many simultaneous 5/6-cores? 42.
How many simultaneous n/(n + 1)-cores? Cn!



Research in Core Partitions 144

Simultaneous core partitions

How many partitions are both 2-cores and 3-cores? 2.

0 1
0 1 2 0

2 0

0 1 2 0 1 2

2 0 1 2

1 2

0 1 2 0 1 2 0 1

2 0 1 2 0 1

1 2 0 1

0 1

0

2

0 1 2

2

1

0 1 2 0 1

2 0 1

1

0

0 1 2 0 1 2 0

2 0 1 2 0

1 2 0

0

2

0 1

2 0

1

0

0 1 2 0

2 0

1 2

0

2

0 1 2 0 1 2

2 0 1 2

1 2

0 1

2

1

0 1 2

2 0 1

1 2

0 1

2

1

0 1 2 0 1

2 0 1

1 2 0

0 1

2 0

1

0

0 1 2 0

2 0 1 2

1 2 0

0 1 2

2 0

1 2

0

2

0
0 1 2

2

0 1 2 0 1

2 0 1

1

0 1 2 0 1 2 0

2 0 1 2 0

1 2 0

0

0 1

2

1

0 1 2 0

2 0

1

0

0 1 2 0 1 2

2 0 1 2

1 2

0

2

0 1 2

2 0

1 2

0

2

0 1 2 0 1

2 0 1

1 2

0 1

2

1

0 1 2 0

2 0 1

1 2 0

0 1

2 0

1

0

How many partitions are both 3-cores and 4-cores? 5.
How many simultaneous 4/5-cores? 14.
How many simultaneous 5/6-cores? 42.
How many simultaneous n/(n + 1)-cores? Cn!

Jaclyn Anderson proved that the number of s/t-cores is 1
s+t

(
s+t
s

)
.
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Simultaneous core partitions

How many partitions are both 2-cores and 3-cores? 2.

0 1
0 1 2 0

2 0

0 1 2 0 1 2

2 0 1 2

1 2

0 1 2 0 1 2 0 1

2 0 1 2 0 1

1 2 0 1

0 1

0

2

0 1 2

2

1

0 1 2 0 1

2 0 1

1

0

0 1 2 0 1 2 0

2 0 1 2 0

1 2 0

0

2

0 1

2 0

1

0

0 1 2 0

2 0

1 2

0

2

0 1 2 0 1 2

2 0 1 2

1 2

0 1

2

1

0 1 2

2 0 1

1 2

0 1

2

1

0 1 2 0 1

2 0 1

1 2 0

0 1

2 0

1

0

0 1 2 0

2 0 1 2

1 2 0

0 1 2

2 0

1 2

0

2

0
0 1 2

2

0 1 2 0 1

2 0 1

1

0 1 2 0 1 2 0

2 0 1 2 0

1 2 0

0

0 1

2

1

0 1 2 0

2 0
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⋆ Happy to have students who would like to do research!
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Course Evaluation

Please comment on:

◮ Prof. Chris’s effectiveness as a teacher.

◮ Prof. Chris’s contribution to your learning.

◮ The course material: What you enjoyed and/or found challenging.

◮ Is there anything you would change about the course?

◮ How did the reality of the course compare to your expectations?

◮ Is there anything else Prof. Chris should know?

Place completed evaluations in the provided folder.
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