The **Young diagram** of $\lambda = (\lambda_1, \dots, \lambda_k)$ has λ_i boxes in row *i*.

The **Young diagram** of $\lambda = (\lambda_1, ..., \lambda_k)$ has λ_i boxes in row *i*. (James, Kerber) Create an **abacus diagram** from the boundary of λ . Abacus: Function $a : \mathbb{Z} \to \{\bullet, \bot\}$.

The **Young diagram** of $\lambda = (\lambda_1, ..., \lambda_k)$ has λ_i boxes in row *i*. (James, Kerber) Create an **abacus diagram** from the boundary of λ . Abacus: Function $a : \mathbb{Z} \to \{\bullet, \bot\}$.

The **Young diagram** of $\lambda = (\lambda_1, ..., \lambda_k)$ has λ_i boxes in row *i*. (James, Kerber) Create an **abacus diagram** from the boundary of λ . Abacus: Function $a : \mathbb{Z} \to \{\bullet, \bot\}$. (Equivalence class...)

The **Young diagram** of $\lambda = (\lambda_1, ..., \lambda_k)$ has λ_i boxes in row *i*. (James, Kerber) Create an **abacus diagram** from the boundary of λ . Abacus: Function $a : \mathbb{Z} \to \{\bullet, \bot\}$. (Equivalence class...)

The **hook length** of a box = # boxes below + # boxes to right + box λ is a *t*-core if no boxes have hook length *t*.

The **hook length** of a box = # boxes below + # boxes to right + box λ is a *t*-core if no boxes have hook length $t \leftrightarrow t$ -flush abacus

The **hook length** of a box = # boxes below + # boxes to right + box λ is a *t*-core if no boxes have hook length $t \leftrightarrow t$ -flush abacus

The **hook length** of a box = # boxes below + # boxes to right + box λ is a *t*-core if no boxes have hook length $t \leftrightarrow t$ -flush abacus

The **hook length** of a box = # boxes below + # boxes to right + box λ is a *t*-core if no boxes have hook length $t \leftrightarrow t$ -flush abacus

Of interest: Partitions that are **both** *s*-core **and** *t*-core. (s, t) = 1

▶ Abaci that are both *s*-flush and *t*-flush.

Of interest: Partitions that are **both** *s*-core **and** *t*-core. (s, t) = 1

► Abaci that are both *s*-flush and *t*-flush.

There are infinitely many (self-conjugate) *t*-core partitions.

Of interest: Partitions that are **both** *s*-core **and** *t*-core. (s, t) = 1

► Abaci that are both *s*-flush and *t*-flush.

There are infinitely many (self-conjugate) *t*-core partitions.

Of interest: Partitions that are **both** *s*-core **and** *t*-core. (s, t) = 1

► Abaci that are both *s*-flush and *t*-flush.

There are infinitely many (self-conjugate) *t*-core partitions.

► Representation Theory: (origin)

► Nakayama conjecture, proved by Brauer & Robinson 1947 says t-cores label t-blocks of irreducible modular representations for S_n.

- ► Representation Theory: (origin)
 - ► Nakayama conjecture, proved by Brauer & Robinson 1947 says t-cores label t-blocks of irreducible modular representations for S_n.
- Number Theory:

▶ Let
$$c_t(n) = \#$$
 of *t*-core partitions of *n*.
▶ In 1976, Olsson proved $\sum_{n\geq 0} c_t(n)x^n = \prod_{n\geq 1} \frac{(1-x^{nt})^t}{1-x^n}$

- Representation Theory: (origin)
 - ▶ Nakayama conjecture, proved by Brauer & Robinson 1947 says *t*-cores label *t*-blocks of irreducible modular representations for S_n .

Number Theory:

- ▶ Let $c_t(n) = \#$ of *t*-core partitions of *n*. ▶ In 1976, Olsson proved $\sum_{n \ge 0} c_t(n) x^n = \prod_{n \ge 1} \frac{(1 x^{nt})^t}{1 x^n}$

Numerical properties of $c_t(n)$?

- ▶ 1996: Granville & Ono proved **positivity**: $c_t(n) > 0$ ($t \ge 4$).
- ▶ 1999: Stanton conjectured **monotonicity**: $c_{t+1}(n) \ge c_t(n)$
- ▶ 2012: R. Nath & I conjectured **monotonicity**: $sc_{t+2}(n) \ge sc_t(n)$

- Representation Theory: (origin)
 - Nakayama conjecture, proved by Brauer & Robinson 1947 says *t*-cores label *t*-blocks of irreducible modular representations for S_n .

Number Theory:

- ▶ Let $c_t(n) = \#$ of *t*-core partitions of *n*. ▶ In 1976, Olsson proved $\sum_{n \ge 0} c_t(n) x^n = \prod_{n \ge 1} \frac{(1 x^{nt})^t}{1 x^n}$

Numerical properties of $c_t(n)$?

- ▶ 1996: Granville & Ono proved **positivity**: $c_t(n) > 0$ ($t \ge 4$).
- ▶ 1999: Stanton conjectured **monotonicity**: $c_{t+1}(n) \ge c_t(n)$
- ▶ 2012: R. Nath & I conjectured **monotonicity**: $sc_{t+2}(n) \ge sc_t(n)$
- Modular forms: g.f. related to Dedekind's η -fcn, a m.f. of wt. 1/2.

- Representation Theory: (origin)
 - Nakayama conjecture, proved by Brauer & Robinson 1947 says *t*-cores label *t*-blocks of irreducible modular representations for S_n .

Number Theory:

- ▶ Let $c_t(n) = \#$ of *t*-core partitions of *n*. ▶ In 1976, Olsson proved $\sum_{n \ge 0} c_t(n) x^n = \prod_{n \ge 1} \frac{(1 x^{nt})^t}{1 x^n}$

Numerical properties of $c_t(n)$?

- ▶ 1996: Granville & Ono proved **positivity**: $c_t(n) > 0$ ($t \ge 4$).
- ▶ 1999: Stanton conjectured **monotonicity**: $c_{t+1}(n) \ge c_t(n)$
- 2012: R. Nath & I conjectured **monotonicity**: $sc_{t+2}(n) \ge sc_t(n)$
- Modular forms: g.f. related to Dedekind's η -fcn, a m.f. of wt. 1/2.
- ▶ Group Theory: By Lascoux 2001, t-cores \longleftrightarrow coset reps in \widetilde{S}_t/S_t Group actions on combinatorial objects!!!!

The combinatorics of groups:

- Made up of a set of elements $W = \{w_1, w_2, \ldots\}$.
- Multiplication of two elements w_1w_2 stays in the group.

The combinatorics of groups:

- Made up of a set of elements $W = \{w_1, w_2, \ldots\}$.
- Multiplication of two elements w_1w_2 stays in the group.
 - ▶ ALTHOUGH, it is **not** the case that $w_1w_2 = w_2w_1$.

The combinatorics of groups:

- Made up of a set of elements $W = \{w_1, w_2, \ldots\}$.
- Multiplication of two elements w_1w_2 stays in the group.
 - ALTHOUGH, it is **not** the case that $w_1w_2 = w_2w_1$.
- ▶ There is an identity element (id) & Every element has an inverse.
- ▶ Think: (Non-zero real numbers) or (invertible $n \times n$ matrices.)

The combinatorics of groups:

- Made up of a set of elements $W = \{w_1, w_2, \ldots\}$.
- Multiplication of two elements w_1w_2 stays in the group.
 - ALTHOUGH, it is **not** the case that $w_1w_2 = w_2w_1$.
- ▶ There is an identity element (id) & Every element has an inverse.
- ▶ Think: (Non-zero real numbers) or (invertible $n \times n$ matrices.)

We will talk about reflection groups. (With nice pictures)

• *W* is generated by a set of generators $S = \{s_1, s_2, \ldots, s_k\}$.

The combinatorics of groups:

- Made up of a set of elements $W = \{w_1, w_2, \ldots\}$.
- Multiplication of two elements w_1w_2 stays in the group.
 - ALTHOUGH, it is **not** the case that $w_1w_2 = w_2w_1$.
- ▶ There is an identity element (id) & Every element has an inverse.
- ▶ Think: (Non-zero real numbers) or (invertible $n \times n$ matrices.)

We will talk about reflection groups. (With nice pictures)

W is generated by a set of generators S = {s₁, s₂,..., s_k}.
 ► Every w ∈ W can be written as a product of generators.
 ► Along with a set of relations.

The combinatorics of groups:

- Made up of a set of elements $W = \{w_1, w_2, \ldots\}$.
- Multiplication of two elements w_1w_2 stays in the group.
 - ALTHOUGH, it is **not** the case that $w_1w_2 = w_2w_1$.
- ▶ There is an identity element (id) & Every element has an inverse.
- ▶ Think: (Non-zero real numbers) or (invertible $n \times n$ matrices.)

We will talk about reflection groups. (With nice pictures)

- *W* is generated by a set of generators $S = \{s_1, s_2, \ldots, s_k\}$.
 - Every $w \in W$ can be written as a product of generators.
- ► Along with a set of **relations**.

These are rules to convert between expressions.

▶
$$s_i^2 = \text{id.}$$
 —and— $(s_i s_j)^{\text{power}} = \text{id.}$

The combinatorics of groups:

- Made up of a set of elements $W = \{w_1, w_2, \ldots\}$.
- Multiplication of two elements w_1w_2 stays in the group.
 - ALTHOUGH, it is **not** the case that $w_1w_2 = w_2w_1$.
- ▶ There is an identity element (id) & Every element has an inverse.
- ▶ Think: (Non-zero real numbers) or (invertible $n \times n$ matrices.)

We will talk about reflection groups. (With nice pictures)

- *W* is generated by a set of generators $S = \{s_1, s_2, \ldots, s_k\}$.
 - Every $w \in W$ can be written as a product of generators.
- ► Along with a set of **relations**.

▶ These are rules to convert between expressions.

▶
$$s_i^2 = \text{id.}$$
 —and— $(s_i s_j)^{\text{power}} = \text{id.}$

For example, $w = s_3 s_2 s_1 s_1 s_2 s_4 = s_3 s_2 id s_2 s_4 = s_3 id s_4 = s_3 s_4$

► The action of multiplying (on the left) by a generator s corresponds to a reflection across a hyperplane H_s. (s_i² = id)

▶ When the angle between H_s and H_t is $\frac{\pi}{3}$, relation is $(st)^3 = id$.

► The action of multiplying (on the left) by a generator s corresponds to a reflection across a hyperplane H_s. (s_i² = id)

When the angle between H_s and H_t is π/3, relation is (st)³ = id.
 The group depends on the placement of the hyperplanes. |S| = 6.

► The action of multiplying (on the left) by a generator s corresponds to a reflection across a hyperplane H_s. (s_i² = id)

When the angle between H_s and H_t is π/4, relation is (st)⁴ = id.
 The group depends on the placement of the hyperplanes. |S| = 8.

► The action of multiplying (on the left) by a generator s corresponds to a reflection across a hyperplane H_s. (s_i² = id)

When the angle between H_s and H_t is π/5, relation is (st)⁵ = id.
 The group depends on the placement of the hyperplanes. |S|=10.

► The action of multiplying (on the left) by a generator s corresponds to a reflection across a hyperplane H_s. (s_i² = id)

When the angle between H_s and H_t is π/6, relation is (st)⁶ = id.
 The group depends on the placement of the hyperplanes. |S|=12.

Reflection Groups

► The action of multiplying (on the left) by a generator s corresponds to a reflection across a hyperplane H_s. (s_i² = id)

When the angle between H_s and H_t is π/n, relation is (st)ⁿ = id.
 The group depends on the placement of the hyperplanes. |S|=2n.

An infinite reflection group: the **affine permutations** \widetilde{S}_n .

An infinite reflection group: the **affine permutations** \widetilde{S}_n .

An infinite reflection group: the **affine permutations** \widetilde{S}_n .

An infinite reflection group: the **affine permutations** \widetilde{S}_n .

An infinite reflection group: the **affine permutations** \widetilde{S}_n .

An infinite reflection group: the **affine permutations** \widetilde{S}_n .

An infinite reflection group: the **affine permutations** \widetilde{S}_n .

An infinite reflection group: the **affine permutations** \widetilde{S}_n .

▶ Add a new generator s_0 and a new affine hyperplane H_0 .

Elements generated by $\{s_0, s_1, s_2\}$ correspond to alcoves here.

Many ways to reference elements in \widetilde{S}_n .

Many ways to reference elements in \widetilde{S}_n .

Geometry. Point to the alcove.

Many ways to reference elements in \widetilde{S}_n .

- **Geometry.** Point to the alcove.
- Alcove coordinates. Keep track of how many hyperplanes of each type you have crossed to get to your alcove.

Coordinates:

Many ways to reference elements in \widetilde{S}_n .

- **Geometry.** Point to the alcove.
- Alcove coordinates. Keep track of how many hyperplanes of each type you have crossed to get to your alcove.
- ► Word. Write the element as a (short) product of generators.

Coordinates:

Word: $s_0 s_1 s_2 s_1 s_0$

Many ways to reference elements in S_n .

- **Geometry.** Point to the alcove.
- Alcove coordinates. Keep track of how many hyperplanes of each type you have crossed to get to your alcove.
- ► Word. Write the element as a (short) product of generators.
- Permutation. Similar to writing finite permutations as 312.

Coordinates:

3	1
1	

Word: $s_0s_1s_2s_1s_0$

Permutation:

(-3, 2, 7)

Many ways to reference elements in S_n .

- **Geometry.** Point to the alcove.
- Alcove coordinates. Keep track of how many hyperplanes of each type you have crossed to get to your alcove.
- ► Word. Write the element as a (short) product of generators.
- ▶ **Permutation.** Similar to writing finite permutations as 312.
- Abacus diagram. Columns of numbers.

Abacus diagram:

Many ways to reference elements in \widetilde{S}_n .

- **Geometry.** Point to the alcove.
- Alcove coordinates. Keep track of how many hyperplanes of each type you have crossed to get to your alcove.
- ► Word. Write the element as a (short) product of generators.
- Permutation. Similar to writing finite permutations as 312.
- Abacus diagram. Columns of numbers.
- **Core partition.** Hook length condition.

Many ways to reference elements in S_n .

- **Geometry.** Point to the alcove.
- Alcove coordinates. Keep track of how many hyperplanes of each type you have crossed to get to your alcove.
- ► Word. Write the element as a (short) product of generators.
- Permutation. Similar to writing finite permutations as 312.
- ► Abacus diagram. Columns of numbers.
- **Core partition.** Hook length condition.
- **Bounded partition.** Part size bounded.

Core partition:

Bounded partition:

Many ways to reference elements in \widetilde{S}_n .

- **Geometry.** Point to the alcove.
- Alcove coordinates. Keep track of how many hyperplanes of each type you have crossed to get to your alcove.
- ► Word. Write the element as a (short) product of generators.
- Permutation. Similar to writing finite permutations as 312.
- ► Abacus diagram. Columns of numbers.
- **Core partition.** Hook length condition.
- **Bounded partition.** Part size bounded.
- **Others!** Lattice path, order ideal, etc.

Core partition:

Bounded partition:

Many ways to reference elements in \widetilde{S}_n .

- **Geometry.** Point to the alcove.
- Alcove coordinates. Keep track of how many hyperplanes of each type you have crossed to get to your alcove.
- ► Word. Write the element as a (short) product of generators.
- Permutation. Similar to writing finite permutations as 312.
- ► Abacus diagram. Columns of numbers.
- **Core partition.** Hook length condition.
- **Bounded partition.** Part size bounded.
- ▶ **Others!** Lattice path, order ideal, etc.

They all play nicely with each other.

Core partition:

Bounded partition:

An abacus model for affine permutations

(James and Kerber, 1981) Given an affine permutation $[w_1, \ldots, w_n]$,

- ▶ Place integers in *n* runners.
- ▶ Circled: *beads*. Empty: *gaps*
- Create an abacus where each runner has a lowest bead at w_i.

Example: [-4, -3, 7, 10]

- ► Generators act nicely.
- ▶ s_i interchanges runners $i \leftrightarrow i + 1$.
- \triangleright s₀ interchanges runners 1 and *n* (with shifts)

An abacus model for affine permutations

(James and Kerber, 1981) Given an affine permutation $[w_1, \ldots, w_n]$,

- ► Generators act nicely.
- ▶ s_i interchanges runners $i \leftrightarrow i + 1$. $(s_1 : 1 \leftrightarrow 2)$
- \triangleright s₀ interchanges runners 1 and *n* (with shifts)

An abacus model for affine permutations

(James and Kerber, 1981) Given an affine permutation $[w_1, \ldots, w_n]$,

- Place integers in *n* runners. (-9)-11) (-10) (-9) Circled: beads. Empty: gaps (-5) -6) Create an abacus where each (-1) runner has a lowest bead at w_i . $4 \underbrace{\mathbf{S}_1}{1} (1) 2 (3) 4 \underbrace{\mathbf{S}_1}{4}$ (3)(2 2 (5) 6 (7) 8 (7) 8 5 (10) 11 12 9 10 11 12 9 *Example:* [-4, -3, 7, 10]13 14 15 16 16 13 17 18 19 20 17 18 19 20 17 20
 - ► Generators act nicely.
 - ▶ s_i interchanges runners $i \leftrightarrow i + 1$. $(s_1 : 1 \leftrightarrow 2)$
 - ▶ s_0 interchanges runners 1 and n (with shifts) ($s_0 : 1 \stackrel{\text{shift}}{\leftrightarrow} 4$)

Action of generators on the core partition

- Label the boxes of λ with residues.
- s_i acts by adding or removing boxes with residue *i*.

Example. $\lambda = (5, 3, 3, 1, 1)$ is a 4-core.

- has removable 0 boxes
- ▶ has addable 1, 2, 3 boxes.

0	1	2	3	0	1
3	0	1	2	3	0
2	3	0	1	2	3
1	2	3	0	1	2
0	1	2	3	0	1
3	0	1	2	3	0

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0	3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0	$\xrightarrow{S_0} \stackrel{0}{\xrightarrow{3}} \\ \xrightarrow{1} \\ 0 \\ 3 \\ 3 \\ \xrightarrow{3} \\ 3 \\ 3 \\ \xrightarrow{3} \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\$	I 2 3 0 I 2 3 0 I 2 3 0 I 2 3 0 I 2	3 0 2 3 1 2 0 1
<i>s</i> ₁	\downarrow	∑ 5 2		
0 1 2	3 0 1	0	1 2 3	
3 0 1	2 3 0	3	0 1 2	
2 3 0	1 2 3	2	3 0 1	2 3
1 2 3	0 1 2	1	2 3 0	
0 1 2	301	0	1 2 3	
301	2 3 0	3	0 1 2	30

Action of generators on the core partition

- Label the boxes of λ with residues.
- s_i acts by adding or removing boxes with residue *i*.

Example. $\lambda = (5, 3, 3, 1, 1)$ is a 4-core.

- has removable 0 boxes
- ▶ has addable 1, 2, 3 boxes.

Idea: We can use this to figure out a *word* for *w*.

0	1	2	3	0	1
3	0	1	2	3	0
2	3	0	1	2	3
1	2	3	0	1	2
0	1	2	3	0	1
3	0	1	2	3	0

Finding a word for an affine permutation.

Example: The word in S_4 corresponding to $\lambda = (6, 4, 4, 2, 2)$:

 $s_1 s_0 s_2 s_1 s_3 s_2 s_0 s_3 s_1 s_0$

	0 3 2 1 0	1 0 3 2 1		0 3	3 2 1 0 3	2	2	s	2 →	0 3 2 1 0	1 0 3 2 1	2 1 0 3 2	3 2 1 0 3	0 3 2 1 0	2	5	1 >		3 2		3 2 1 0 3	0 3 2 1 0	2	s	3		1 0 3 2 1	0 3	1 0	-	3 2		<u>5</u> 2	•
0 1	-	0 3			2	3	0	1	2		0		2	3		2	3	3		1	_	3		3	0		0			3 1			0	1
3 0 2 3 1 2 0 1	1 0 3	2 1 0	3 2 1	0 3 2	-	5 0 →	3 2 1	0 3 2	1 0 3	2 1 0	3 2 1 0	0 3 2	<u>5</u> 3 →	2 1	0 3 2 1	1 0 3	2 1 0	3 2 1	0 3 2	$\stackrel{s_1}{\rightarrow}$	-	3 0 2 3 1 2 0 1	1 0 3	2 1 0	3 2 1	0 3 2	<u>∽</u>		2 1	0 3 2 1	0 3	1 0	2 1	3 2
30	1	2	3	0			3	0	1	2	3	0		3	0	1	2	3	0		1	3 0	1	2	3	0			3	0	1	2	3	0

The bijection between cores and alcoves

How many partitions are both 2-cores and 3-cores?

How many partitions are both 2-cores and 3-cores? 2.

How many partitions are both 2-cores and 3-cores? 2.

How many partitions are both 3-cores and 4-cores?

How many partitions are both 2-cores and 3-cores? 2.

How many partitions are both 3-cores and 4-cores? 5.

How many partitions are both 2-cores and 3-cores? 2.

How many partitions are both 3-cores and 4-cores? **5**. How many simultaneous 4/5-cores?

How many partitions are both 2-cores and 3-cores? 2.

How many partitions are both 3-cores and 4-cores? **5**. How many simultaneous 4/5-cores? **14**.

How many partitions are both 2-cores and 3-cores? 2.

How many partitions are both 3-cores and 4-cores? **5**. How many simultaneous 4/5-cores? **14**. How many simultaneous 5/6-cores? **42**.

How many partitions are both 2-cores and 3-cores? 2.

How many partitions are both 3-cores and 4-cores? **5**. How many simultaneous 4/5-cores? **14**. How many simultaneous 5/6-cores? **42**. How many simultaneous n/(n + 1)-cores?

How many partitions are both 2-cores and 3-cores? 2.

How many partitions are both 3-cores and 4-cores? **5**. How many simultaneous 4/5-cores? **14**. How many simultaneous 5/6-cores? **42**. How many simultaneous n/(n + 1)-cores? **C**_n!

How many partitions are both 2-cores and 3-cores? 2.

How many partitions are both 3-cores and 4-cores? **5**. How many simultaneous 4/5-cores? **14**. How many simultaneous 5/6-cores? **42**. How many simultaneous n/(n + 1)-cores? **C**_n!

Jaclyn Anderson proved that the number of s/t-cores is $\frac{1}{s+t} {s+t \choose s}$.

Simultaneous core partitions

How many partitions are both 2-cores and 3-cores? 2.

How many partitions are both 3-cores and 4-cores? **5**. How many simultaneous 4/5-cores? **14**. How many simultaneous 5/6-cores? **42**. How many simultaneous n/(n + 1)-cores? **C**_n!

Jaclyn Anderson proved that the number of s/t-cores is $\frac{1}{s+t} {s+t \choose s}$. The number of 3/7-cores is $\frac{1}{10} {10 \choose 3} = \frac{1}{10} \frac{10 \cdot 9 \cdot 8}{3 \cdot 2 \cdot 1} = 12$.

Simultaneous core partitions

How many partitions are both 2-cores and 3-cores? 2.

How many partitions are both 3-cores and 4-cores? **5**. How many simultaneous 4/5-cores? **14**. How many simultaneous 5/6-cores? **42**. How many simultaneous n/(n + 1)-cores? **C**_n!

Jaclyn Anderson proved that the number of s/t-cores is $\frac{1}{s+t} {s+t \choose s}$. The number of 3/7-cores is $\frac{1}{10} {10 \choose 3} = \frac{1}{10} \frac{10.9.8}{3\cdot 2\cdot 1} = 12$. Fishel–Vazirani proved an alcove interpretation of n/(mn+1)-cores.

Simultaneous core partitions

How many partitions are both 2-cores and 3-cores? 2.

How many partitions are both 3-cores and 4-cores? **5**. How many simultaneous 4/5-cores? **14**. How many simultaneous 5/6-cores? **42**. How many simultaneous n/(n + 1)-cores? $C_n!$

Jaclyn Anderson proved that the number of s/t-cores is $\frac{1}{s+t} {s+t \choose s}$. The number of 3/7-cores is $\frac{1}{10} {10 \choose 3} = \frac{1}{10} \frac{10.9.8}{3.2\cdot 1} = 12$. Fishel–Vazirani proved an alcove interpretation of n/(mn+1)-cores.

★ Can we extend combinatorial interps to other reflection groups?

► Yes! Involves self-conjugate partitions.

★ Can we extend combinatorial interps to other reflection groups?

- ▶ Yes! Involves self-conjugate partitions.
- ▶ Article (28 pp) published in Journal of Algebra. (2012)

► Joint with Brant Jones, James Madison University.

★ Can we extend combinatorial interps to other reflection groups?

- ▶ Yes! Involves self-conjugate partitions.
- ▶ Article (28 pp) published in Journal of Algebra. (2012)
- ▶ Joint with Brant Jones, James Madison University.

★ What numerical properties do self-conjugate core partitions have?

- ▶ Yes! Involves self-conjugate partitions.
- ▶ Article (28 pp) published in Journal of Algebra. (2012)
- ▶ Joint with Brant Jones, James Madison University.
- ★ What numerical properties do self-conjugate core partitions have?
 - ▶ There are more (s.c. t+2-cores of n) than (s.c. t-cores of n).

★ Can we extend combinatorial interps to other reflection groups?

- ▶ Yes! Involves self-conjugate partitions.
- ▶ Article (28 pp) published in Journal of Algebra. (2012)
- ► Joint with Brant Jones, James Madison University.

★ What numerical properties do self-conjugate core partitions have?

▶ There are more (s.c. t+2-cores of n) than (s.c. t-cores of n).

▶ Article (17 pp) published in *Journal of Number Theory.* (2013)

★ Can we extend combinatorial interps to other reflection groups?

- ▶ Yes! Involves self-conjugate partitions.
- ▶ Article (28 pp) published in Journal of Algebra. (2012)
- ▶ Joint with Brant Jones, James Madison University.

★ What numerical properties do self-conjugate core partitions have?

- ▶ There are more (s.c. t+2-cores of n) than (s.c. t-cores of n).
- ▶ Article (17 pp) published in *Journal of Number Theory.* (2013)
- Joint with Rishi Nath, York College, CUNY.

★ Can we extend combinatorial interps to other reflection groups?

- ▶ Yes! Involves self-conjugate partitions.
- ▶ Article (28 pp) published in Journal of Algebra. (2012)
- ▶ Joint with Brant Jones, James Madison University.
- ★ What numerical properties do self-conjugate core partitions have?
 - ▶ There are more (s.c. t+2-cores of n) than (s.c. t-cores of n).
 - ▶ Article (17 pp) published in *Journal of Number Theory.* (2013)
 - Joint with Rishi Nath, York College, CUNY.

★ Properties of simultaneous core partitions. (Formula: $\frac{1}{s+t} {s+t \choose s}$)

- ▶ Yes! Involves self-conjugate partitions.
- ▶ Article (28 pp) published in Journal of Algebra. (2012)
- ▶ Joint with Brant Jones, James Madison University.
- ★ What numerical properties do self-conjugate core partitions have?
 - ▶ There are more (s.c. t+2-cores of n) than (s.c. t-cores of n).
 - ▶ Article (17 pp) published in *Journal of Number Theory.* (2013)
 - Joint with Rishi Nath, York College, CUNY.
- ★ Properties of simultaneous core partitions. (Formula: $\frac{1}{s+t} {s+t \choose s}$) ▶ Question. What is the average size of an (s, t)-core partition?

- ▶ Yes! Involves self-conjugate partitions.
- ▶ Article (28 pp) published in Journal of Algebra. (2012)
- ▶ Joint with Brant Jones, James Madison University.
- ★ What numerical properties do self-conjugate core partitions have?
 - ▶ There are more (s.c. t+2-cores of n) than (s.c. t-cores of n).
 - ▶ Article (17 pp) published in *Journal of Number Theory.* (2013)
 - Joint with Rishi Nath, York College, CUNY.
- ★ Properties of simultaneous core partitions. (Formula: $\frac{1}{s+t} {s+t \choose s}$)
 - **Question.** What is the average size of an (s, t)-core partition?
 - ▶ *Progress:* Answer: (s + t + 1)(s 1)(t 1)/24. Proof?

- ▶ Yes! Involves self-conjugate partitions.
- ▶ Article (28 pp) published in Journal of Algebra. (2012)
- ▶ Joint with Brant Jones, James Madison University.
- ★ What numerical properties do self-conjugate core partitions have?
 - ▶ There are more (s.c. t+2-cores of n) than (s.c. t-cores of n).
 - ▶ Article (17 pp) published in *Journal of Number Theory.* (2013)
 - Joint with Rishi Nath, York College, CUNY.
- ★ Properties of simultaneous core partitions. (Formula: $\frac{1}{s+t} {s+t \choose s}$)
 - **Question.** What is the average size of an (s, t)-core partition?
 - ▶ *Progress:* Answer: (s + t + 1)(s 1)(t 1)/24. Proof?
 - Question: Is there a core statistic for a q-analog of $\frac{1}{s+t} {s+t \choose s}$?

- ▶ Yes! Involves self-conjugate partitions.
- ▶ Article (28 pp) published in Journal of Algebra. (2012)
- ▶ Joint with Brant Jones, James Madison University.
- ★ What numerical properties do self-conjugate core partitions have?
 - ▶ There are more (s.c. t+2-cores of n) than (s.c. t-cores of n).
 - ▶ Article (17 pp) published in *Journal of Number Theory.* (2013)
 - Joint with Rishi Nath, York College, CUNY.
- ★ Properties of simultaneous core partitions. (Formula: $\frac{1}{s+t} {s+t \choose s}$)
 - **Question.** What is the average size of an (s, t)-core partition?
 - ▶ *Progress:* Answer: (s + t + 1)(s 1)(t 1)/24. Proof?
 - Question: Is there a core statistic for a q-analog of $\frac{1}{s+t} {s+t \choose s}$?
 - ▶ *Progress: m*-Catalan number C_3 through (3, 3m + 1)-cores.

- ▶ Yes! Involves self-conjugate partitions.
- ▶ Article (28 pp) published in Journal of Algebra. (2012)
- ▶ Joint with Brant Jones, James Madison University.
- ★ What numerical properties do self-conjugate core partitions have?
 - ▶ There are more (s.c. t+2-cores of n) than (s.c. t-cores of n).
 - ► Article (17 pp) published in *Journal of Number Theory.* (2013)
 - Joint with Rishi Nath, York College, CUNY.
- ★ Properties of simultaneous core partitions. (Formula: $\frac{1}{s+t} {s+t \choose s}$)
 - **Question.** What is the average size of an (s, t)-core partition?
 - ▶ *Progress:* Answer: (s + t + 1)(s 1)(t 1)/24. Proof?
 - Question: Is there a core statistic for a q-analog of $\frac{1}{s+t} {s+t \choose s}$?
 - ▶ *Progress: m*-Catalan number C_3 through (3, 3m + 1)-cores.
 - ▶ (s, t)-cores \longleftrightarrow certain lattice paths. Statistics galore!

- ▶ Yes! Involves self-conjugate partitions.
- ▶ Article (28 pp) published in *Journal of Algebra*. (2012)
- Joint with Brant Jones, James Madison University.
- ★ What numerical properties do self-conjugate core partitions have?
 - ▶ There are more (s.c. t+2-cores of n) than (s.c. t-cores of n).
 - ► Article (17 pp) published in *Journal of Number Theory.* (2013)
 - Joint with Rishi Nath, York College, CUNY.
- ★ Properties of simultaneous core partitions. (Formula: $\frac{1}{s+t} {s+t \choose s}$)
 - **Question.** What is the average size of an (s, t)-core partition?
 - ▶ *Progress:* Answer: (s + t + 1)(s 1)(t 1)/24. Proof?
 - Question: Is there a core statistic for a q-analog of $\frac{1}{s+t} {s+t \choose s}$?
 - ▶ *Progress: m*-Catalan number C_3 through (3, 3m + 1)-cores.
 - ▶ (s, t)-cores \longleftrightarrow certain lattice paths. Statistics galore!
- ★ Happy to have students who would like to do research!

Course Evaluation

Please comment on:

- ▶ Prof. Chris's effectiveness as a teacher.
- ▶ Prof. Chris's contribution to your learning.
- ▶ The course material: What you enjoyed and/or found challenging.
- Is there anything you would change about the course?
- ▶ How did the reality of the course compare to your expectations?
- ▶ Is there anything else Prof. Chris should know?

Place completed evaluations in the provided folder.