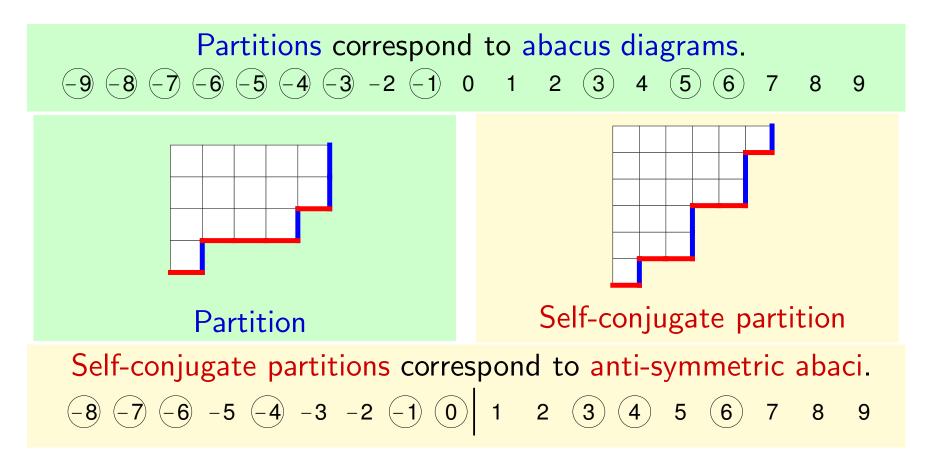
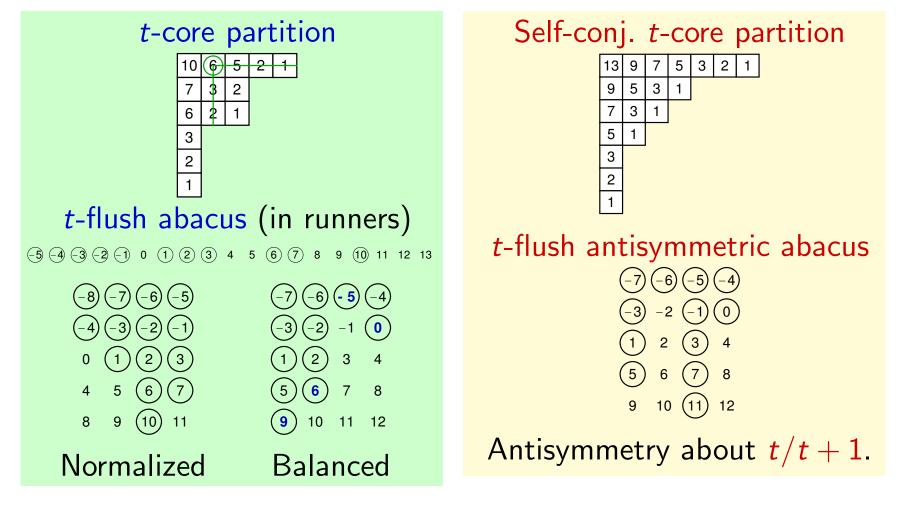
Partitions

The **Young diagram** of $\lambda = (\lambda_1, ..., \lambda_k)$ has λ_i boxes in row *i*. (James, Kerber) Create an **abacus diagram** from the boundary of λ . Abacus: Function $a : \mathbb{Z} \to \{\bullet, \lrcorner\}$. (Equivalence class...)



Core partitions

The **hook length** of a box = # boxes below + # boxes to right + box λ is a *t*-core if no boxes have hook length $t \leftrightarrow t$ -flush abacus



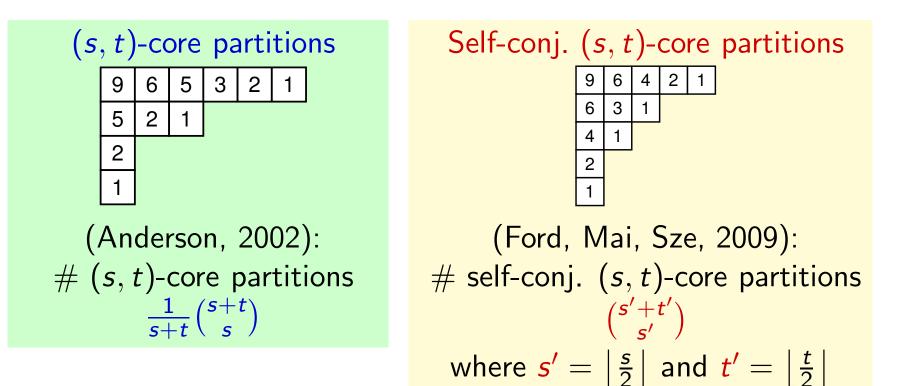
(Discuss defining beads, reading off hooks....)

Simultaneity

Of interest: Partitions that are **both** *s*-core **and** *t*-core. (s, t) = 1

► Abaci that are both *s*-flush and *t*-flush.

There are infinitely many (self-conjugate) *t*-core partitions.



Core partitions in the literature

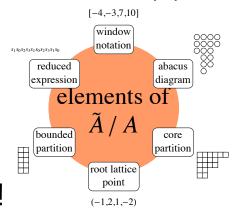
- Representation Theory: (origin)
 - ▶ Nakayama conjecture, proved by Brauer & Robinson 1947 says *t*-cores label *t*-blocks of irreducible modular representations for S_n .

Number Theory:

- ▶ Let c_t(n) = # of t-core partitions of n.
 ▶ In 1976, Olsson proved ∑_{n≥0} c_t(n)xⁿ = ∏_{n≥1} (1-x^{nt})^t/(1-xⁿ)

Numerical properties of $c_t(n)$?

- ▶ 1996: Granville & Ono proved **positivity**: $c_t(n) > 0$ ($t \ge 4$).
- ▶ 1999: Stanton conjectured **monotonicity**: $c_{t+1}(n) \ge c_t(n)$
- ▶ 2012: R. Nath & I conjectured **monotonicity**: $sc_{t+2}(n) \ge sc_t(n)$
- Modular forms: g.f. related to Dedekind's η -fcn, a m.f. of wt. 1/2.
- ► **Group Theory:** By Lascoux 2001, *t*-cores \longleftrightarrow coset reps in S_t/S_t Group actions on combinatorial objects!!!!



Reflection Groups

The combinatorics of groups:

- ▶ Made up of a set of elements $W = \{w_1, w_2, ...\}$.
- Multiplication of two elements w₁w₂ stays in the group.
 ALTHOUGH, it is **not** the case that w₁w₂ = w₂w₁.
- ► There is an identity element (id) & Every element has an inverse.
- ▶ Think: (Non-zero real numbers) or (invertible *n* × *n* matrices.)

We will talk about reflection groups. (With nice pictures)

▶ *W* is **generated** by a set of generators $S = \{s_1, s_2, ..., s_k\}$.

• Every $w \in W$ can be written as a product of generators.

► Along with a set of **relations**.

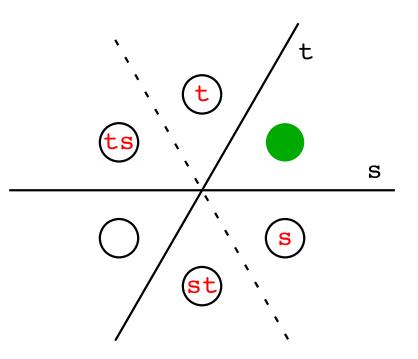
► These are rules to convert between expressions.

▶ $s_i^2 = \text{id.}$ —and— $(s_i s_j)^{\text{power}} = \text{id.}$

For example, $w = s_3 s_2 s_1 s_1 s_2 s_4 = s_3 s_2 i d s_2 s_4 = s_3 i d s_4 = s_3 s_4$

Reflection Groups

► The action of multiplying (on the left) by a generator s corresponds to a reflection across a hyperplane H_s . $(s_i^2 = id)$

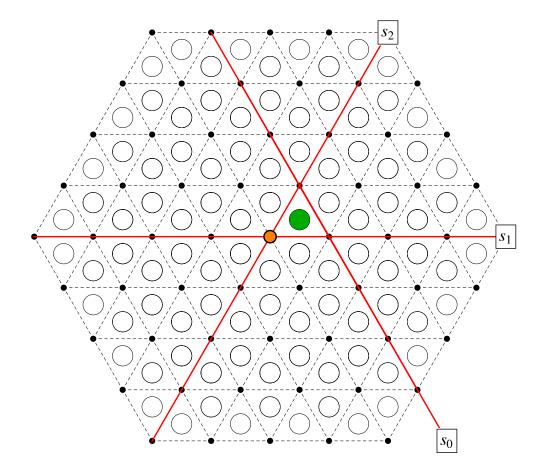


When the angle between H_s and H_t is ^π/₃, relation is (st)³ = id.
 The group depends on the placement of the hyperplanes. |S| = 6.

Infinite Reflection Groups

An infinite reflection group: the **affine permutations** S_n .

▶ Add a new generator s_0 and a new affine hyperplane H_0 .



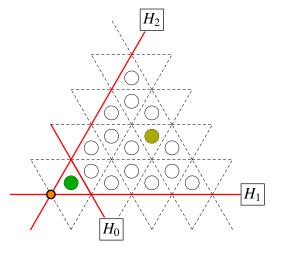
Elements generated by $\{s_0, s_1, s_2\}$ correspond to **alcoves** here.

Combinatorics of affine permutations

Many ways to reference elements in S_n .

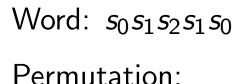
- **Geometry.** Point to the alcove.
- Alcove coordinates. Keep track of how many hyperplanes of each type you have crossed to get to your alcove.
- Word. Write the element as a (short) product of generators.
- Permutation. Similar to writing finite permutations as 312.
- ► Abacus diagram. Columns of numbers.
- Core partition. Hook length condition.
- Bounded partition. Part size bounded.
- Others! Lattice path, order ideal, etc.

They all play nicely with each other.



Coordinates:

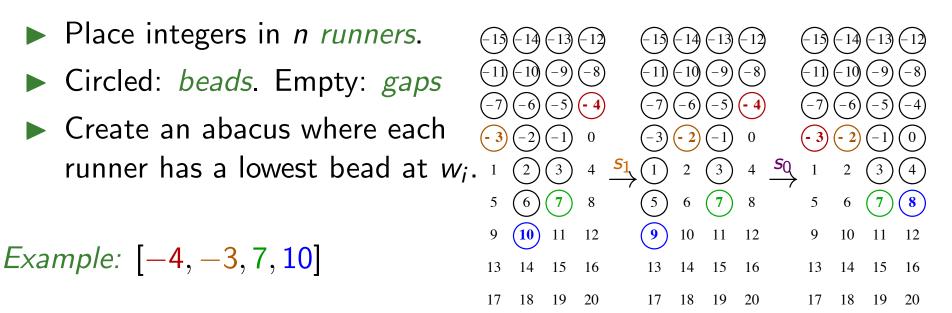
3	1
1	



(-3, 2, 7)

An abacus model for affine permutations

(James and Kerber, 1981) Given an affine permutation $[w_1, \ldots, w_n]$,



- ► Generators act nicely.
- ▶ s_i interchanges runners $i \leftrightarrow i + 1$. $(s_1 : 1 \leftrightarrow 2)$
- ▶ s_0 interchanges runners 1 and n (with shifts) ($s_0 : 1 \stackrel{\text{shift}}{\leftrightarrow} 4$)

Action of generators on the core partition

- Label the boxes of λ with residues.
- s_i acts by adding or removing boxes with residue *i*.

Example. $\lambda = (5, 3, 3, 1, 1)$ is a 4-core.

- has removable 0 boxes
- ▶ has addable 1, 2, 3 boxes.

Idea: We can use this to figure out a *word* for *w*.

0	1	2	3	0	1
3	0	1	2	3	0
2	3	0	1	2	3
1	2	3	0	1	2
0	1	2	3	0	1
3	0	1	2	3	0

0 1 2 3 0 1 3 0 1 2 3 0 2 3 0 1 2 3 1 2 3 0 1 2 3 1 2 3 0 1 2 3 0 1 2 3 0 1 2 0 1 2 3 0 1 2 3 0 1 2 3 0 1	$\xrightarrow{s_0}$	0 3 2 1 0 3	1 0 3 2 1 0	2 1 0 3 2 1	3 2 1 0 3 2	0 3 2 1 0 3	1 0 3 2 1 0
$s_1\downarrow$	√ 52						
0 1 2 3 0 1		0	1	2	3	0	1
3 0 1 2 3 0		3	0	1	2	3	0
2 3 0 1 2 3		2	3	0	1	2	3
1 2 3 0 1 2		1	2	3	0	1	2
0 1 2 3 0 1		0	1	2	3	0	1
3 0 1 2 3 0		3	0	1	2	3	0

Finding a word for an affine permutation.

Example: The word in S_4 corresponding to $\lambda = (6, 4, 4, 2, 2)$:

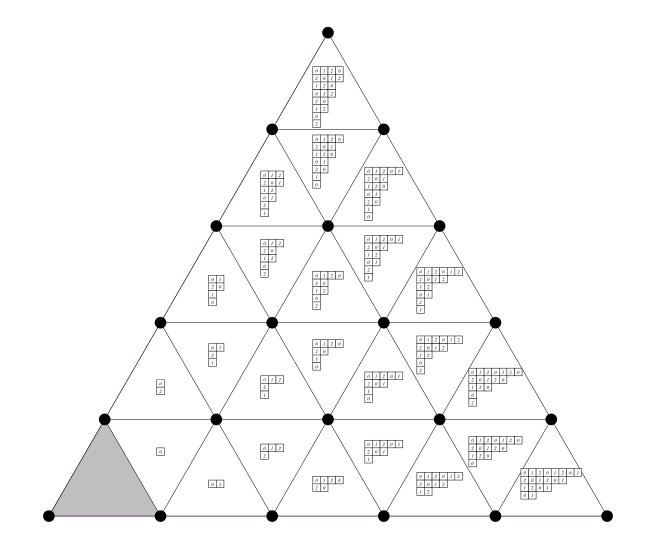
 $s_1 s_0 s_2 s_1 s_3 s_2 s_0 s_3 s_1 s_0$

						_				
0	1	2	3	0	1			1		
3	0	1	2	3	0		3	0	1	14
2	3	0	1	2	3	<i>s</i> 1	2	3	0	1
1	2	3	0	1	2	\rightarrow		2		
0	1	2	3	0	1		0	1	2	3
3							3	0	1	2

)
s 2
\rightarrow
,
)
0 3 2 1 0

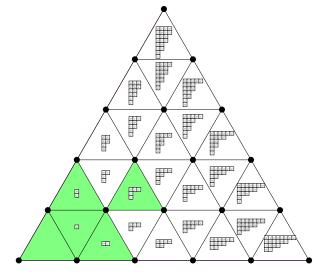
					1		0												1							1							1
3	0	1	2	3	0	6	3	0	1	2	3	0	6.	3	0	1	2	3	0	-	3	0	1	2	3	0	6	3	0	1	2	3	0
2	3	0	1	2	3	$\xrightarrow{\mathbf{S}_0}$	2	3	0	1	2	3	$\xrightarrow{\mathbf{S}3}$	2	3	0	1	2	3	$\xrightarrow{s_1}$	2	3	0	1	2	3	$\xrightarrow{s_0}$	2	3	0	1	2	3
1	2	3	0	1	2	1	1	2	3	0	1	2	/	1	2	3	0	1	2	· · ·	1	2	3	0	1	2	,	1	2	3	0	1	2
0	1	2	3	0	1		0	1	2	3	0	1		0	1	2	3	0	1		0	1	2	3	0	1		0	1	2	3	0	1
3	0	1	2	3	0		3	0	1	2	3	0		3	0	1	2	3	0		3	0	1	2	3	0		3	0	1	2	3	0

The bijection between cores and alcoves



Simultaneous core partitions

How many partitions are both 2-cores and 3-cores? 2.



How many partitions are both 3-cores and 4-cores? **5**. How many simultaneous 4/5-cores? **14**. How many simultaneous 5/6-cores? **42**. How many simultaneous n/(n + 1)-cores? C_n ! Jaclyn Anderson proved that the number of s/t-cores is $\frac{1}{s+t} {s+t \choose s}$.

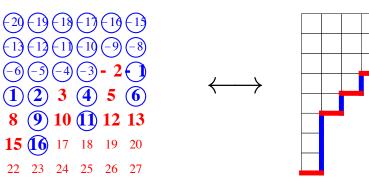
The number of 3/7-cores is $\frac{1}{10} \binom{10}{3} = \frac{1}{10} \frac{10 \cdot 9 \cdot 8}{3 \cdot 2 \cdot 1} = 12.$

Fishel–Vazirani proved an alcove interpretation of n/(mn+1)-cores.

Research Questions

★ Can we extend combinatorial interps to other reflection groups?

- ► Yes! Involves self-conjugate partitions.
- ► Article (28 pp) published in *Journal of Algebra*. (2012)
- ► Joint with Brant Jones, James Madison University.



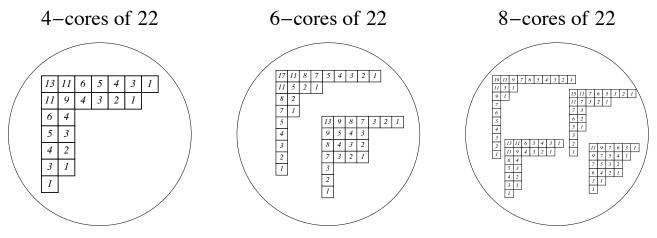
Research Questions

★ Can we extend combinatorial interps to other reflection groups?

- Yes! Involves self-conjugate partitions.
- Article (28 pp) published in *Journal of Algebra*. (2012)
- ► Joint with Brant Jones, James Madison University.

★ What numerical properties do self-conjugate core partitions have?

- ▶ There are more (s.c. t+2-cores of n) than (s.c. t-cores of n).
- ► Article (17 pp) published in *Journal of Number Theory.* (2013)
- Joint with Rishi Nath, York College, CUNY.



Research Questions

★ Can we extend combinatorial interps to other reflection groups?

- Yes! Involves self-conjugate partitions.
- ► Article (28 pp) published in *Journal of Algebra*. (2012)
- Joint with Brant Jones, James Madison University.

★ What numerical properties do self-conjugate core partitions have?

- ▶ There are more (s.c. t+2-cores of n) than (s.c. t-cores of n).
- Article (17 pp) published in *Journal of Number Theory*. (2013)
- Joint with Rishi Nath, York College, CUNY.

 \star Properties of simultaneous core partitions. (Formula: $\frac{1}{s+t} {s+t \choose s}$)

- **Question.** What is the average size of an (s, t)-core partition?
- ▶ *Progress:* Answer: (s + t + 1)(s 1)(t 1)/24. Proof?
- Question: Is there a core statistic for a q-analog of $\frac{1}{s+t} {s+t \choose s}$?
- ▶ *Progress: m*-Catalan number C_3 through (3, 3m + 1)-cores.
- ▶ (s, t)-cores \leftrightarrow certain lattice paths. Statistics galore!
- **★** Happy to have students who would like to do research!