Given a set of combinatorial objects A, a **combinatorial statistic** is an integer given to every element of the set.

In other words, it is a function $\mathcal{A} \to \mathbb{Z}_{\geq 0}$.

Given a set of combinatorial objects A, a combinatorial statistic is an integer given to every element of the set.

In other words, it is a function $\mathcal{A} \to \mathbb{Z}_{\geq 0}$.

Example. Let S be the set of subsets of $\{1, 2, 3\}$. The cardinality of a set is a combinatorial statistic on S.

$$\begin{vmatrix} \emptyset \end{vmatrix} = 0 \qquad |\{1\}| = 1 \qquad |\{2\}| = 1 \qquad |\{3\}| = 1 \\ |\{1,2\}| = 2 \qquad |\{1,3\}| = 2 \qquad |\{2,3\}| = 2 \qquad |\{1,2,3\}| = 3$$

Given a set of combinatorial objects A, a **combinatorial statistic** is an integer given to every element of the set.

In other words, it is a function $\mathcal{A} \to \mathbb{Z}_{\geq 0}$.

Example. Let S be the set of subsets of $\{1, 2, 3\}$. The cardinality of a set is a combinatorial statistic on S.

$$\begin{vmatrix} \emptyset \end{vmatrix} = 0 \qquad |\{1\}| = 1 \qquad |\{2\}| = 1 \qquad |\{3\}| = 1 \\ |\{1,2\}| = 2 \qquad |\{1,3\}| = 2 \qquad |\{2,3\}| = 2 \qquad |\{1,2,3\}| = 3$$

Combinatorial statistics provide a *refinement* of counting.

less information more information counting statistics complete enumeration

Given a set of combinatorial objects A, a **combinatorial statistic** is an integer given to every element of the set.

In other words, it is a function $\mathcal{A} \to \mathbb{Z}_{\geq 0}.$

Example. Let S be the set of subsets of $\{1, 2, 3\}$. The cardinality of a set is a combinatorial statistic on S.

$$\begin{vmatrix} \emptyset \end{vmatrix} = 0 \qquad |\{1\}| = 1 \qquad |\{2\}| = 1 \qquad |\{3\}| = 1 \\ |\{1,2\}| = 2 \qquad |\{1,3\}| = 2 \qquad |\{2,3\}| = 2 \qquad |\{1,2,3\}| = 3$$

Combinatorial statistics provide a *refinement* of counting.

less information

more information

Questions involving combinatorial statistics:

▶ What is the *distribution* of the statistics?

Questions involving combinatorial statistics:

- ▶ What is the *distribution* of the statistics?
- ▶ What is the *average size* of an object in the set?

Questions involving combinatorial statistics:

- ▶ What is the *distribution* of the statistics?
- ▶ What is the *average size* of an object in the set?
- ▶ Which statistics have the same distribution?
 - Insight into their structure.
 - Provides non-trivial bijections in the set?

Questions involving combinatorial statistics:

- ▶ What is the *distribution* of the statistics?
- ▶ What is the *average size* of an object in the set?
- ▶ Which statistics have the same distribution?
 - Insight into their structure.
 - Provides non-trivial bijections in the set?
- A especially rich playground involves *permutation statistics*.

Representations of permutations

One-line notation: $\pi = 416253$ Cycle notation: $\pi = (142)(36)(5)$

Questions involving combinatorial statistics:

- ▶ What is the *distribution* of the statistics?
- ▶ What is the *average size* of an object in the set?
- ▶ Which statistics have the same distribution?
 - Insight into their structure.
 - Provides non-trivial bijections in the set?

A especially rich playground involves permutation statistics.

Representations of permutations

One-line notation: $\pi = 416253$ Cycle notation: $\pi = (142)(36)(5)$

Definition: Let $\pi = \pi_1 \pi_2 \cdots \pi_n$ be a permutation. A **descent** is a position *i* such that $\pi_i > \pi_{i+1}$. Define des (π) to be the **number of descents** in π .

Definition: Let $\pi = \pi_1 \pi_2 \cdots \pi_n$ be a permutation. A **descent** is a position *i* such that $\pi_i > \pi_{i+1}$. Define des (π) to be the **number of descents** in π .

Example. When $\pi = 416253$, des $(\pi) = 3$ since $4 \searrow 1$, $6 \searrow 2$, $5 \searrow 3$.

Definition: Let $\pi = \pi_1 \pi_2 \cdots \pi_n$ be a permutation. A descent is a position *i* such that $\pi_i > \pi_{i+1}$. Define des (π) to be the **number of descents** in π . Example. When $\pi = 416253$, des $(\pi) = 3$ since 4 > 1, 6 > 2, 5 > 3. Question: How many *n*-permutations have *d* descents? des(12) = 0 des(123) =_____ des(213) =_____ des(312) =_____ des(21) = 1 des(132) =_____ des(231) =_____ des(321) =______

Definition: Let $\pi = \pi_1 \pi_2 \cdots \pi_n$ be a permutation. A descent is a position *i* such that $\pi_i > \pi_{i+1}$. Define des (π) to be the **number of descents** in π .

des(12) = 0	des(123) =	des(213) =	des(312) =
des(21) = 1	des(132) =	des(231) =	des(321) =

n∖d	0	1	2	3	4
1	1				
2	1	1			
3	1	4	1		
4	1	11	11	1	
5	1	26	66	26	1

What are the possible values for $des(\pi)$?

Definition: Let $\pi = \pi_1 \pi_2 \cdots \pi_n$ be a permutation. A descent is a position *i* such that $\pi_i > \pi_{i+1}$. Define des (π) to be the **number of descents** in π .

Example. When $\pi = 416253$, $des(\pi) = 3$ since $4 \ge 1$, $6 \ge 2$, $5 \ge 3$. *Question:* How many *n*-permutations have *d* descents? des(12) = 0 $des(123) = _$ $des(213) = _$ $des(312) = _$ des(21) = 1 $des(132) = _$ $des(231) = _$ $des(321) = _$

n∖d	0	1	2	3	4
1	1				
2	1	1			
3	1	4	1		
4	1	11	11	1	
5	1	26	66	26	1

What are the possible values for des(π)?

Note the symmetry. If π has d descents, its reverse $\hat{\pi}$ has _____ descents.

Definition: Let $\pi = \pi_1 \pi_2 \cdots \pi_n$ be a permutation. A **descent** is a position *i* such that $\pi_i > \pi_{i+1}$. Define des (π) to be the number of descents in π .

Define des(π) to be the **number of descents** in π .

Example. When $\pi = 416253$, des $(\pi) = 3$ since $4 \ge 1$, $6 \ge 2$, $5 \ge 3$. *Question:* How many *n*-permutations have *d* descents? des(12) = 0 des $(123) = _$ des $(213) = _$ des $(312) = _$ des(21) = 1 des $(132) = _$ des $(231) = _$ des $(321) = _$

n∖d	0	1	2	3	4
1	1				
2	1	1			
3	1	4	1		
4	1	11	11	1	
5	1	26	66	26	1

What are the possible values for des(π)?

Note the symmetry. If π has d descents, its reverse $\hat{\pi}$ has _____ descents.

These are the Eulerian numbers.

Definition: Let $\pi = \pi_1 \pi_2 \cdots \pi_n$ be a permutation. An **inversion** is a pair i < j such that $\pi_i > \pi_j$. Define $inv(\pi)$ as the **number of inversions** in π .

Definition: Let $\pi = \pi_1 \pi_2 \cdots \pi_n$ be a permutation. An **inversion** is a pair i < j such that $\pi_i > \pi_j$. Define inv (π) as the **number of inversions** in π . Example. When $\pi = 416253$, inv $(\pi) = 7$ since 4 > 1, 4 > 2, 4 > 3, 6 > 2, 6 > 5, 6 > 3, 5 > 3.

Definition: Let $\pi = \pi_1 \pi_2 \cdots \pi_n$ be a permutation. An **inversion** is a pair i < j such that $\pi_i > \pi_j$. Define inv (π) as the **number of inversions** in π .

Example. When $\pi = 416253$, $inv(\pi) = 7$ since 4 > 1, 4 > 2, 4 > 3, 6 > 2, 6 > 5, 6 > 3, 5 > 3. In a string diagram $inv(\pi) =$ number of crossings. In a matrix diagram $inv(\pi)$, draw *Rothe diagram*:

Definition: Let $\pi = \pi_1 \pi_2 \cdots \pi_n$ be a permutation. \square An **inversion** is a pair i < j such that $\pi_i > \pi_i$. Define inv(π) as the number of inversions in π . Example. When $\pi = 416253$, inv $(\pi) = 7$ since 4 > 1, 4 > 2, 4 > 3, 6 > 2, 6 > 5, 6 > 3, 5 > 3.In a string diagram $inv(\pi) = number$ of crossings. In a matrix diagram inv(π), draw Rothe diagram: inv(12) = 0 inv(123) = inv(213) =inv(21) = 1 inv(132) = inv(231) =

n∖i	0	1	2	3	4	5	6
1	1						
2	1	1					
3	1	2	2	1			
4	1	3	5	6	5	3	1

What are the possible values for $inv(\pi)$?

Definition: Let $\pi = \pi_1 \pi_2 \cdots \pi_n$ be a permutation. \square An **inversion** is a pair i < j such that $\pi_i > \pi_i$. Define inv(π) as the number of inversions in π . Example. When $\pi = 416253$, inv $(\pi) = 7$ since 4 > 1, 4 > 2, 4 > 3, 6 > 2, 6 > 5, 6 > 3, 5 > 3.In a string diagram $inv(\pi) = number$ of crossings. In a matrix diagram inv(π), draw Rothe diagram: inv(123) =inv(12) = 0

inv(21) = 1

$$inv(123) = 1$$

 $inv(132) = 1$

 inv(213)	=
inv(231)	=

n∖i	0	1	2	3	4	5	6
1	1						
2	1	1					
3	1	2	2	1			
4	1	3	2 5	6	5	3	1

What are the possible values for $inv(\pi)$?

The inversion number is a good way to count how "far away" a permutation is from the identity.

Definition: Let $\pi = \pi_1 \pi_2 \cdots \pi_n$ be a permutation.

Define maj(π), the **major index** of π , to be sum of the descents of π . [Named after Major Percy MacMahon. (British army, early 1900's)]

Definition: Let $\pi = \pi_1 \pi_2 \cdots \pi_n$ be a permutation.

Define maj(π), the **major index** of π , to be sum of the descents of π . [Named after Major Percy MacMahon. (British army, early 1900's)]

Example. When $\pi = 416253$, maj $(\pi) = 9$ since the descents of π are in positions 1, 3, and 5.

Definition: Let $\pi = \pi_1 \pi_2 \cdots \pi_n$ be a permutation.

Define maj(π), the major index of π , to be sum of the descents of π . [Named after Major Percy MacMahon. (British army, early 1900's)]

Example. When $\pi = 416253$, maj $(\pi) = 9$ since the descents of π are in positions 1, 3, and 5.

Definition: Let $\pi = \pi_1 \pi_2 \cdots \pi_n$ be a permutation.

Define maj(π), the major index of π , to be sum of the descents of π . [Named after Major Percy MacMahon. (British army, early 1900's)]

Example. When $\pi = 416253$, maj $(\pi) = 9$ since the descents of π are in positions 1, 3, and 5.

$n \setminus m$	0	1	2	3	4	5	6
1	1						
2	1	1					
3	1	2	2	1			
4	1	3	5	6	5	3	1

What are the possible values for $maj(\pi)$?

The distribution of maj(π) IS THE SAME AS the distribution of inv(π)!

Definition: Let $\pi = \pi_1 \pi_2 \cdots \pi_n$ be a permutation.

Define maj(π), the major index of π , to be sum of the descents of π . [Named after Major Percy MacMahon. (British army, early 1900's)]

Example. When $\pi = 416253$, maj $(\pi) = 9$ since the descents of π are in positions 1, 3, and 5.

$n \setminus m$	0	1	2	3	4	5	6	V
1	1							n
2	1	1						
3	1	2	2	1				
4	1	3	5	6	5	3	1	

What are the possible values for $maj(\pi)$?

The distribution of maj(π) IS THE SAME AS the distribution of inv(π)!

A statistic that has the same distribution as inv is called Mahonian.

Definition: A q-analog of a number c is an expression f(q) such that $\lim_{q\to 1} f(q) = c$.

Example.
$$\frac{1-q^n}{1-q} = \left(1+q+q^2+\dots+q^{n-2}+q^{n-1}\right)$$
 is a q -analog of n because $\lim_{q\to 1} \frac{1-q^n}{1-q} = n$.

Definition: A q-analog of a number c is an expression f(q) such that $\lim_{q\to 1} f(q) = c$.

Example.
$$\frac{1-q^n}{1-q} = \left(1+q+q^2+\dots+q^{n-2}+q^{n-1}\right)$$
 is a q-analog of n because $\lim_{q\to 1} \frac{1-q^n}{1-q} = n$.

We write
$$[n]_q = \frac{1-q^n}{1-q}$$
.

Definition: A q-analog of a number c is an expression f(q) such that $\lim_{q\to 1} f(q) = c$.

Example.
$$\frac{1-q^n}{1-q} = \left(1+q+q^2+\dots+q^{n-2}+q^{n-1}\right) \text{ is a}$$

q-analog of *n* because $\lim_{q\to 1} \frac{1-q^n}{1-q} = n$.
We write $[n]_q = \frac{1-q^n}{1-q}$.

q-analogs work hand in hand with combinatorial statistics. If stat is a combinatorial statistic on a set S (stat : $S \mapsto \mathbb{N}$), then $\sum_{s \in S} q^{\text{stat}(s)}$ is a *q*-analog of |S|

Definition: A q-analog of a number c is an expression f(q) such that $\lim_{q\to 1} f(q) = c$.

Example.
$$\frac{1-q^n}{1-q} = \left(1+q+q^2+\dots+q^{n-2}+q^{n-1}\right)$$
 is a q-analog of n because $\lim_{q\to 1} \frac{1-q^n}{1-q} = n$.

We write
$$[n]_q = \frac{1-q^n}{1-q}$$

q-analogs work hand in hand with combinatorial statistics. If stat is a combinatorial statistic on a set S (stat : $S \mapsto \mathbb{N}$), then $\sum_{s \in S} q^{\text{stat}(s)}$ is a *q*-analog of |S| because

$$\lim_{q \to 1} \sum_{s \in S} q^{\operatorname{stat}(s)} = \sum_{s \in S} 1^{\operatorname{stat}(s)} = \sum_{s \in S} 1 = |S|$$

Question: What is the generating function $\sum_{\pi \in S_n} q^{\text{inv}(\pi)}$?

Question: What is the generating function $\sum_{\pi \in S_n} q^{inv(\pi)}$?

n	$\sum_{\pi \in S_n} q^{inv(\pi)}$
1	$1q^0 = 1$
2	$1q^0 + 1q^1 = (1+q)$
3	$1q^0 + 2q^1 + 2q^2 + 1q^3 = (1 + q + q^2)(1 + q)$
4	$1q^0 + 3q^1 + 5q^2 + 6q^3 + 5q^4 + 3q^5 + 1q^6 =$

Question: What is the generating function $\sum_{\pi \in S_n} q^{inv(\pi)}$?

n	$\sum_{\pi \in S_n} q^{inv(\pi)}$
1	$1q^0 = 1$
2	$1q^0 + 1q^1 = (1+q)$
3	$1q^0 + 2q^1 + 2q^2 + 1q^3 = (1 + q + q^2)(1 + q)$
4	$1q^0 + 3q^1 + 5q^2 + 6q^3 + 5q^4 + 3q^5 + 1q^6 =$

Conjecture: $\sum_{\pi \in S_n} q^{inv(\pi)} =$

Question: What is the generating function $\sum_{\pi \in S_n} q^{inv(\pi)}$?

n	$\sum_{\pi\in S_n} q^{inv(\pi)}$
1	$1q^0 = 1$
	$1q^0 + 1q^1 = (1+q)$
3	$1q^0 + 2q^1 + 2q^2 + 1q^3 = (1 + q + q^2)(1 + q)$
4	$1q^0 + 3q^1 + 5q^2 + 6q^3 + 5q^4 + 3q^5 + 1q^6 =$

Conjecture: $\sum_{\pi \in S_n} q^{\text{inv}(\pi)} = [n]_q \cdots [1]_q =: [n]_q!$, the q-factorial.

Question: What is the generating function $\sum_{\pi \in S_n} q^{inv(\pi)}$?

n	$\sum_{\pi\in S_n} q^{inv(\pi)}$
1	$1q^0 = 1$
	$1q^0 + 1q^1 = (1+q)$
3	$1q^0 + 2q^1 + 2q^2 + 1q^3 = (1 + q + q^2)(1 + q)$
4	$1q^0 + 3q^1 + 5q^2 + 6q^3 + 5q^4 + 3q^5 + 1q^6 =$

Conjecture: $\sum_{\pi \in S_n} q^{\text{inv}(\pi)} = [n]_q \cdots [1]_q =: [n]_q!$, the *q*-factorial. Claim: This equation makes sense when q = 1.

Theorem:
$$\sum_{\pi \in S_n} q^{\text{inv}(\pi)} = [n]_q!$$

Proof. There exists a bijection
 $\left\{\begin{array}{c} \text{permutations} \\ \pi \in S_n \end{array}\right\} \longleftrightarrow \left\{\begin{array}{c} \text{lists} (a_1, \dots, a_n) \\ \text{where } 0 \leq a_i \leq n-i \end{array}\right\}.$

Theorem:
$$\sum_{\pi \in S_n} q^{inv(\pi)} = [n]_q!$$

Proof. There exists a bijection
 $\left\{\begin{array}{c} \text{permutations} \\ \pi \in S_n \end{array}\right\} \longleftrightarrow \left\{\begin{array}{c} \text{lists } (a_1, \dots, a_n) \\ \text{where } 0 \leq a_i \leq n-i \end{array}\right\}.$
Given a permutation π , create its **inversion table**. Define a_i to be the number of entries j to the left of i that are smaller than i .
Then $inv(\pi) = a_1 + a_2 + \dots + a_n$.

Inversion Statistics

Theorem: $\sum_{\pi \in S_n} q^{inv(\pi)} = [n]_q!$ Proof. There exists a bijection $\left\{\begin{array}{c} permutations \\ \pi \in S_n \end{array}\right\} \longleftrightarrow \left\{\begin{array}{c} lists (a_1, \dots, a_n) \\ where \ 0 \le a_i \le n-i \end{array}\right\}.$ Given a permutation π , create its **inversion table**. Define a_i to be the number of entries j to the left of i that are smaller than i. Then $inv(\pi) = a_1 + a_2 + \dots + a_n$. Example. The inversion table of $\pi = 43152$ is (3, 2, 0, 1, 0).

Inversion Statistics

Theorem:
$$\sum_{\pi \in S_n} q^{inv(\pi)} = [n]_q!$$

Proof. There exists a bijection
 $\left\{\begin{array}{c} \text{permutations} \\ \pi \in S_n \end{array}\right\} \longleftrightarrow \left\{\begin{array}{c} \text{lists } (a_1, \dots, a_n) \\ \text{where } 0 \leq a_i \leq n-i \end{array}\right\}.$
Given a permutation π , create its **inversion table**. Define a_i to be the number of entries j to the left of i that are smaller than i .
Then $inv(\pi) = a_1 + a_2 + \dots + a_n$.
Example. The inversion table of $\pi = 43152$ is $(3, 2, 0, 1, 0)$.
 $\sum_{\pi \in S_n} q^{inv(\pi)} = \sum_{a_1=0}^{n-1} \sum_{a_2=0}^{n-2} \cdots \sum_{a_n=0}^{0} q^{a_1+a_2+\dots+a_n}$
 $= \left(\sum_{a_1=0}^{n-1} q^{a_1}\right) \left(\sum_{a_2=0}^{n-2} q^{a_2}\right) \cdots \left(\sum_{a_n=0}^{0} q^{a_n}\right)$

= $[n]_q$ $[n-1]_q$ \cdots $[1]_q$ = $[n]_q!$

We said that inv and maj are equidistributed. Two possible proofs:

Find a bijection $f: S_n \to S_n$ such that $maj(\pi) = inv(f(\pi))$.

• Or prove
$$\sum_{\pi \in S_n} q^{\operatorname{inv}(\pi)} = \sum_{\pi \in S_n} q^{\operatorname{maj}(\pi)}.$$

We said that inv and maj are equidistributed. Two possible proofs:

Find a bijection $f: S_n \to S_n$ such that $maj(\pi) = inv(f(\pi))$.

• Or prove
$$\sum_{\pi \in S_n} q^{\operatorname{inv}(\pi)} = \sum_{\pi \in S_n} q^{\operatorname{maj}(\pi)}$$
.

With a q-analog of factorials, we can define a q-analog of binomial coefficients. Define

$$\begin{bmatrix} n \\ k \end{bmatrix}_q = \frac{[n]_q!}{[k]_q![n-k]_q!}$$

These *polynomials* are called the *q*-binomial coefficients or Gaussian polynomials.

We said that inv and maj are equidistributed. Two possible proofs:

▶ Find a bijection $f : S_n \to S_n$ such that $maj(\pi) = inv(f(\pi))$.

• Or prove
$$\sum_{\pi \in S_n} q^{\operatorname{inv}(\pi)} = \sum_{\pi \in S_n} q^{\operatorname{maj}(\pi)}.$$

With a q-analog of factorials, we can define a q-analog of binomial coefficients. Define

$$\begin{bmatrix} n \\ k \end{bmatrix}_q = \frac{[n]_q!}{[k]_q![n-k]_q!}.$$

These *polynomials* are called the *q*-binomial coefficients or Gaussian polynomials.

$$\blacktriangleright \lim_{q \to 1} {n \brack k}_q = {n \choose k}.$$

We said that inv and maj are equidistributed. Two possible proofs:

▶ Find a bijection $f : S_n \to S_n$ such that $maj(\pi) = inv(f(\pi))$.

• Or prove
$$\sum_{\pi \in S_n} q^{\operatorname{inv}(\pi)} = \sum_{\pi \in S_n} q^{\operatorname{maj}(\pi)}.$$

With a q-analog of factorials, we can define a q-analog of binomial coefficients. Define

$$\begin{bmatrix} n \\ k \end{bmatrix}_q = \frac{[n]_q!}{[k]_q![n-k]_q!}$$

These *polynomials* are called the *q*-binomial coefficients or Gaussian polynomials.

• Example.
$$\begin{bmatrix} 4 \\ 2 \end{bmatrix}_q = 1 + q + 2q^2 + q^3 + q^4$$

We said that inv and maj are equidistributed. Two possible proofs:

▶ Find a bijection $f : S_n \to S_n$ such that $maj(\pi) = inv(f(\pi))$.

• Or prove
$$\sum_{\pi \in S_n} q^{\operatorname{inv}(\pi)} = \sum_{\pi \in S_n} q^{\operatorname{maj}(\pi)}.$$

With a q-analog of factorials, we can define a q-analog of binomial coefficients. Define

$$\begin{bmatrix} n \\ k \end{bmatrix}_q = \frac{[n]_q!}{[k]_q![n-k]_q!}$$

These *polynomials* are called the *q*-binomial coefficients or Gaussian polynomials.

$$\blacktriangleright \lim_{q \to 1} {n \brack k}_q = {n \choose k}.$$

► They are indeed polynomials.

• Example. $\begin{bmatrix} 4 \\ 2 \end{bmatrix}_q = 1 + q + 2q^2 + q^3 + q^4$

Combinatorial interpretations of *q*-binomial coefficients!

Consider set $S_{k,n-k}$ of permutations of the multiset $\{1^k, 2^{n-k}\}$. Define $inv(\pi) = |\{i < j : \pi(i) > \pi(j)\}|$.

Example. $\pi = 1122121122$ is a permutation of $\{1^5, 2^5\}$. Then $inv(\pi) = 0 + 0 + 3 + 3 + 0 + 2 + 0 + 0 + 0 = 8$.

Consider set $S_{k,n-k}$ of permutations of the multiset $\{1^k, 2^{n-k}\}$. Define $inv(\pi) = |\{i < j : \pi(i) > \pi(j)\}|$.

Example. $\pi = 1122121122$ is a permutation of $\{1^5, 2^5\}$. Then $inv(\pi) = 0 + 0 + 3 + 3 + 0 + 2 + 0 + 0 + 0 = 8$.

Then
$$\sum_{\pi \in S_{k,n-k}} q^{\text{inv}(\pi)} = {n \brack k}_q$$
. (Note $|S_{k,n-k}| = {n \choose k}$.)

This is a refinement of these permutations in terms of inversions.

Consider set $S_{k,n-k}$ of permutations of the multiset $\{1^k, 2^{n-k}\}$. Define $inv(\pi) = |\{i < j : \pi(i) > \pi(j)\}|$.

Example. $\pi = 1122121122$ is a permutation of $\{1^5, 2^5\}$. Then $inv(\pi) = 0 + 0 + 3 + 3 + 0 + 2 + 0 + 0 + 0 = 8$.

Then
$$\sum_{\pi \in S_{k,n-k}} q^{\text{inv}(\pi)} = {n \brack k}_q$$
. (Note $|S_{k,n-k}| = {n \choose k}$.)

This is a refinement of these permutations in terms of inversions.

Consider the set \mathcal{P} of lattice paths from (0,0) to (a,b).

Consider set $S_{k,n-k}$ of permutations of the multiset $\{1^k, 2^{n-k}\}$. Define $inv(\pi) = |\{i < j : \pi(i) > \pi(j)\}|$.

Example. $\pi = 1122121122$ is a permutation of $\{1^5, 2^5\}$. Then $inv(\pi) = 0 + 0 + 3 + 3 + 0 + 2 + 0 + 0 + 0 = 8$.

Then
$$\sum_{\pi \in S_{k,n-k}} q^{\text{inv}(\pi)} = {n \brack k}_q$$
. (Note $|S_{k,n-k}| = {n \choose k}$.)

This is a refinement of these permutations in terms of inversions.

Consider the set \mathcal{P} of lattice paths from (0,0) to (a,b). Let area(P) be the area above a path P. Then $\sum_{P \in \mathcal{P}} q^{\operatorname{area}(P)} = {a+b \brack a}_q$. (Note $|\mathcal{P}| = {a+b \choose a}$.)

Consider set $S_{k,n-k}$ of permutations of the multiset $\{1^k, 2^{n-k}\}$. Define $inv(\pi) = |\{i < j : \pi(i) > \pi(j)\}|$.

Example. $\pi = 1122121122$ is a permutation of $\{1^5, 2^5\}$. Then $inv(\pi) = 0 + 0 + 3 + 3 + 0 + 2 + 0 + 0 + 0 = 8$.

Then
$$\sum_{\pi \in S_{k,n-k}} q^{\mathsf{inv}(\pi)} = {n \brack k}_q$$
. (Note $|S_{k,n-k}| = {n \choose k}$.)

This is a refinement of these permutations in terms of inversions.

Consider the set \mathcal{P} of lattice paths from (0,0) to (a,b). Let area(P) be the area above a path P. Then $\sum_{P \in \mathcal{P}} q^{\operatorname{area}(P)} = {a+b \brack a}_q$. (Note $|\mathcal{P}| = {a+b \choose a}$.)

This can also be used to give a *q*-analog of the Catalan numbers.

There's always more to learn!!!

References :

- Miklós Bóna. Combinatorics of Permutations, CRC, 2004.
- T. Kyle Petersen. Two-sided Eulerian numbers via balls in boxes. http://arxiv.org/abs/1209.6273
- The Combinatorial Statistic Finder. http://findstat.org/