Combinatorial statistics

Given a set of combinatorial objects \mathcal{A}, a combinatorial statistic is an integer given to every element of the set.

In other words, it is a function $\mathcal{A} \rightarrow \mathbb{Z}_{\geq 0}$.

Combinatorial statistics

Given a set of combinatorial objects \mathcal{A}, a combinatorial statistic is an integer given to every element of the set.

In other words, it is a function $\mathcal{A} \rightarrow \mathbb{Z}_{\geq 0}$.
Example. Let \mathcal{S} be the set of subsets of $\{1,2,3\}$.
The cardinality of a set is a combinatorial statistic on \mathcal{S}.

$$
\begin{array}{cccc}
|\emptyset|=0 & |\{1\}|=1 & |\{2\}|=1 & |\{3\}|=1 \\
|\{1,2\}|=2 & |\{1,3\}|=2 & |\{2,3\}|=2 & |\{1,2,3\}|=3
\end{array}
$$

Combinatorial statistics

Given a set of combinatorial objects \mathcal{A}, a combinatorial statistic is an integer given to every element of the set.

In other words, it is a function $\mathcal{A} \rightarrow \mathbb{Z}_{\geq 0}$.
Example. Let \mathcal{S} be the set of subsets of $\{1,2,3\}$.
The cardinality of a set is a combinatorial statistic on \mathcal{S}.

$$
\begin{array}{cccc}
|\emptyset|=0 & |\{1\}|=1 & |\{2\}|=1 & |\{3\}|=1 \\
|\{1,2\}|=2 & |\{1,3\}|=2 & |\{2,3\}|=2 & |\{1,2,3\}|=3
\end{array}
$$

Combinatorial statistics provide a refinement of counting.
less information
counting
more information

Combinatorial statistics

Given a set of combinatorial objects \mathcal{A}, a combinatorial statistic is an integer given to every element of the set.

In other words, it is a function $\mathcal{A} \rightarrow \mathbb{Z}_{\geq 0}$.
Example. Let \mathcal{S} be the set of subsets of $\{1,2,3\}$.
The cardinality of a set is a combinatorial statistic on \mathcal{S}.

$$
\begin{array}{cccc}
|\emptyset|=0 & |\{1\}|=1 & |\{2\}|=1 & |\{3\}|=1 \\
|\{1,2\}|=2 & |\{1,3\}|=2 & |\{2,3\}|=2 & |\{1,2,3\}|=3
\end{array}
$$

Combinatorial statistics provide a refinement of counting.
less information

| \leftarrow | | | | statistics | |
| :---: | :---: | :---: | :---: | :---: | :---: | | complete |
| :---: |
| enumeration |

Statistics and Permutations

Questions involving combinatorial statistics:

- What is the distribution of the statistics?

Statistics and Permutations

Questions involving combinatorial statistics:

- What is the distribution of the statistics?
- What is the average size of an object in the set?

Statistics and Permutations

Questions involving combinatorial statistics:

- What is the distribution of the statistics?
- What is the average size of an object in the set?
- Which statistics have the same distribution?
- Insight into their structure.
- Provides non-trivial bijections in the set?

Statistics and Permutations

Questions involving combinatorial statistics:

- What is the distribution of the statistics?
- What is the average size of an object in the set?
- Which statistics have the same distribution?
- Insight into their structure.
- Provides non-trivial bijections in the set?

A especially rich playground involves permutation statistics.
Representations of permutations
One-line notation: $\pi=416253$ Cycle notation: $\pi=(142)(36)(5)$

Statistics and Permutations

Questions involving combinatorial statistics:

- What is the distribution of the statistics?
- What is the average size of an object in the set?
- Which statistics have the same distribution?
- Insight into their structure.
- Provides non-trivial bijections in the set?

A especially rich playground involves permutation statistics.

Representations of permutations

One-line notation: $\pi=416253$ Cycle notation: $\pi=(142)(36)(5)$
String diagram:

(only two crossings at a time)

Matrix-like diagram:

Descent statistic

Definition: Let $\pi=\pi_{1} \pi_{2} \cdots \pi_{n}$ be a permutation.
A descent is a position i such that $\pi_{i}>\pi_{i+1}$.
Define $\operatorname{des}(\pi)$ to be the number of descents in π.

Descent statistic

Definition: Let $\pi=\pi_{1} \pi_{2} \cdots \pi_{n}$ be a permutation. A descent is a position i such that $\pi_{i}>\pi_{i+1}$.
Define $\operatorname{des}(\pi)$ to be the number of descents in π.

Example. When $\pi=416253$, $\operatorname{des}(\pi)=3$ since $4 \searrow 1,6 \searrow 2,5 \searrow 3$.

Descent statistic

Definition: Let $\pi=\pi_{1} \pi_{2} \cdots \pi_{n}$ be a permutation. A descent is a position i such that $\pi_{i}>\pi_{i+1}$.
Define $\operatorname{des}(\pi)$ to be the number of descents in π.

Example. When $\pi=416253$, $\operatorname{des}(\pi)=3$ since $4 \searrow 1,6 \searrow 2,5 \searrow 3$.
Question: How many n-permutations have d descents? $\operatorname{des}(12)=0 \quad \operatorname{des}(123)=$ \qquad $\operatorname{des}(213)=$ $\operatorname{des}(312)=$ \qquad $\operatorname{des}(21)=1 \quad \operatorname{des}(132)=$ $\operatorname{des}(231)=$ \qquad $\operatorname{des}(321)=$ \qquad

Descent statistic

Definition: Let $\pi=\pi_{1} \pi_{2} \cdots \pi_{n}$ be a permutation. A descent is a position i such that $\pi_{i}>\pi_{i+1}$.
Define $\operatorname{des}(\pi)$ to be the number of descents in π.

Example. When $\pi=416253$, $\operatorname{des}(\pi)=3$ since $4 \searrow 1,6 \searrow 2,5 \searrow 3$.
Question: How many n-permutations have d descents? $\operatorname{des}(12)=0 \quad \operatorname{des}(123)=$ \qquad $\operatorname{des}(213)=$ $\operatorname{des}(312)=$ \qquad $\operatorname{des}(21)=1 \quad \operatorname{des}(132)=$ $\operatorname{des}(231)=$ $\operatorname{des}(321)=$ \qquad

$n \backslash d$	0	1	2	3	4
1	1				
2	1	1			
3	1	4	1		
4	1	11	11	1	
5	1	26	66	26	1

What are the possible values for $\operatorname{des}(\pi)$?

Descent statistic

Definition: Let $\pi=\pi_{1} \pi_{2} \cdots \pi_{n}$ be a permutation. A descent is a position i such that $\pi_{i}>\pi_{i+1}$.
Define $\operatorname{des}(\pi)$ to be the number of descents in π.

Example. When $\pi=416253$, $\operatorname{des}(\pi)=3$ since $4 \searrow 1,6 \searrow 2,5 \searrow 3$.
Question: How many n-permutations have d descents? $\operatorname{des}(12)=0 \quad \operatorname{des}(123)=\ldots \quad \operatorname{des}(213)=$ $\operatorname{des}(312)=$ \qquad $\operatorname{des}(21)=1 \quad \operatorname{des}(132)=$ $\operatorname{des}(231)=$ $\operatorname{des}(321)=$ \qquad

$n \backslash d$	0	1	2	3	4
1	1				
2	1	1			
3	1	4	1		
4	1	11	11	1	
5	1	26	66	26	1

What are the possible values for $\operatorname{des}(\pi)$?

Note the symmetry. If π has d descents, its reverse $\hat{\pi}$ has \qquad descents.

Descent statistic

Definition: Let $\pi=\pi_{1} \pi_{2} \cdots \pi_{n}$ be a permutation. A descent is a position i such that $\pi_{i}>\pi_{i+1}$.
Define $\operatorname{des}(\pi)$ to be the number of descents in π.

Example. When $\pi=416253$, $\operatorname{des}(\pi)=3$ since $4 \searrow 1,6 \searrow 2,5 \searrow 3$.
Question: How many n-permutations have d descents? $\operatorname{des}(12)=0 \quad \operatorname{des}(123)=\ldots \quad \operatorname{des}(213)=$ $\operatorname{des}(312)=$ \qquad $\operatorname{des}(21)=1 \quad \operatorname{des}(132)=$ $\operatorname{des}(231)=$ $\operatorname{des}(321)=$ \qquad

$n \backslash d$	0	1	2	3	4
1	1				
2	1	1			
3	1	4	1		
4	1	11	11	1	
5	1	26	66	26	1

What are the possible values for $\operatorname{des}(\pi)$?

Note the symmetry. If π has d descents, its reverse $\hat{\pi}$ has \qquad descents.

These are the Eulerian numbers.

Inversion statistic

Definition: Let $\pi=\pi_{1} \pi_{2} \cdots \pi_{n}$ be a permutation. An inversion is a pair $i<j$ such that $\pi_{i}>\pi_{j}$.
Define $\operatorname{inv}(\pi)$ as the number of inversions in π.

Inversion statistic

Definition: Let $\pi=\pi_{1} \pi_{2} \cdots \pi_{n}$ be a permutation. An inversion is a pair $i<j$ such that $\pi_{i}>\pi_{j}$.
Define $\operatorname{inv}(\pi)$ as the number of inversions in π.
Example. When $\pi=416253, \operatorname{inv}(\pi)=7$ since $4>1,4>2,4>3,6>2,6>5,6>3,5>3$.

Inversion statistic

Definition: Let $\pi=\pi_{1} \pi_{2} \cdots \pi_{n}$ be a permutation. An inversion is a pair $i<j$ such that $\pi_{i}>\pi_{j}$. Define $\operatorname{inv}(\pi)$ as the number of inversions in π. Example. When $\pi=416253, \operatorname{inv}(\pi)=7$ since $4>1,4>2,4>3,6>2,6>5,6>3,5>3$. In a string diagram $\operatorname{inv}(\pi)=$ number of crossings. In a matrix diagram $\operatorname{inv}(\pi)$, draw Rothe diagram:

Inversion statistic

Definition: Let $\pi=\pi_{1} \pi_{2} \cdots \pi_{n}$ be a permutation. An inversion is a pair $i<j$ such that $\pi_{i}>\pi_{j}$.
 Define $\operatorname{inv}(\pi)$ as the number of inversions in π.
Example. When $\pi=416253, \operatorname{inv}(\pi)=7$ since $4>1,4>2,4>3,6>2,6>5,6>3,5>3$. In a string diagram $\operatorname{inv}(\pi)=$ number of crossings. In a matrix diagram $\operatorname{inv}(\pi)$, draw Rothe diagram:
 $\begin{array}{lll}\operatorname{inv}(12)=0 & \operatorname{inv}(123)= & \operatorname{inv}(213)= \\ \operatorname{inv}(21)=1 & \operatorname{inv}(132)=\square & \operatorname{inv}(231)=-\end{array}$ $\operatorname{inv}(312)=$ $\operatorname{inv}(321)=$ \qquad

$n \backslash i$	0	1	2	3	4	5	6
1	1						
2	1	1					
3	1	2	2	1			
4	1	3	5	6	5	3	1

What are the possible values for $\operatorname{inv}(\pi)$?

Inversion statistic

Definition: Let $\pi=\pi_{1} \pi_{2} \cdots \pi_{n}$ be a permutation. An inversion is a pair $i<j$ such that $\pi_{i}>\pi_{j}$.
 Define $\operatorname{inv}(\pi)$ as the number of inversions in π.
Example. When $\pi=416253, \operatorname{inv}(\pi)=7$ since $4>1,4>2,4>3,6>2,6>5,6>3,5>3$. In a string diagram $\operatorname{inv}(\pi)=$ number of crossings. In a matrix diagram $\operatorname{inv}(\pi)$, draw Rothe diagram:
 $\begin{array}{lll}\operatorname{inv}(12)=0 & \operatorname{inv}(123)= & \operatorname{inv}(213)=- \\ \operatorname{inv}(21)=1 & \operatorname{inv}(132)=\square & \operatorname{inv}(231)=\square\end{array}$

$$
\operatorname{inv}(312)=
$$

$$
\operatorname{inv}(321)=
$$

\qquad

$n \backslash i$	0	1	2	3	4	5	6
1	1						
2	1	1					
3	1	2	2	1			
4	1	3	5	6	5	3	1

What are the possible values for $\operatorname{inv}(\pi)$?
The inversion number is a good way to count how "far away" a permutation is from the identity.

Major index

Definition: Let $\pi=\pi_{1} \pi_{2} \cdots \pi_{n}$ be a permutation.
Define $\operatorname{maj}(\pi)$, the major index of π, to be sum of the descents of π.
[Named after Major Percy MacMahon. (British army, early 1900's)]

Major index

Definition: Let $\pi=\pi_{1} \pi_{2} \cdots \pi_{n}$ be a permutation.
Define $\operatorname{maj}(\pi)$, the major index of π, to be sum of the descents of π.
[Named after Major Percy MacMahon. (British army, early 1900's)]
Example. When $\pi=416253, \operatorname{maj}(\pi)=9$ since the descents of π are in positions 1,3 , and 5 .

Major index

Definition: Let $\pi=\pi_{1} \pi_{2} \cdots \pi_{n}$ be a permutation.
Define $\operatorname{maj}(\pi)$, the major index of π, to be sum of the descents of π. [Named after Major Percy MacMahon. (British army, early 1900's)]

Example. When $\pi=416253, \operatorname{maj}(\pi)=9$ since the descents of π are in positions 1, 3, and 5 .

$$
\begin{array}{rll}
\operatorname{maj}(12)=0 & \operatorname{maj}(123)=_\quad \operatorname{maj}(213)=_\quad \operatorname{maj}(312)=\square \\
\operatorname{maj}(21)=1 & \operatorname{maj}(132)=\square \quad \operatorname{maj}(231)=\square \quad \operatorname{maj}(321)=\square
\end{array}
$$

Major index

Definition: Let $\pi=\pi_{1} \pi_{2} \cdots \pi_{n}$ be a permutation.
Define $\operatorname{maj}(\pi)$, the major index of π, to be sum of the descents of π. [Named after Major Percy MacMahon. (British army, early 1900's)]

Example. When $\pi=416253, \operatorname{maj}(\pi)=9$ since the descents of π are in positions 1,3 , and 5 .

$$
\begin{array}{lll}
\operatorname{maj}(12)=0 & \operatorname{maj}(123)=_\quad \operatorname{maj}(213)=_\quad \operatorname{maj}(312)=\square \\
\operatorname{maj}(21)=1 & \operatorname{maj}(132)=\square \quad \operatorname{maj}(231)=\square & \operatorname{maj}(321)=\square
\end{array}
$$

$n \backslash m$	0	1	2	3	4	5	6
1	1						
2	1	1					
3	1	2	2	1			
4	1	3	5	6	5	3	1

What are the possible values for $\operatorname{maj}(\pi)$?
The distribution of $\operatorname{maj}(\pi)$ IS THE SAME AS the distribution of $\operatorname{inv}(\pi)$!

Major index

Definition: Let $\pi=\pi_{1} \pi_{2} \cdots \pi_{n}$ be a permutation.
Define $\operatorname{maj}(\pi)$, the major index of π, to be sum of the descents of π. [Named after Major Percy MacMahon. (British army, early 1900's)]
Example. When $\pi=416253, \operatorname{maj}(\pi)=9$ since the descents of π are in positions 1,3 , and 5 .

$$
\begin{array}{lll}
\operatorname{maj}(12)=0 & \operatorname{maj}(123)=_\quad \operatorname{maj}(213)=_\quad \operatorname{maj}(312)=\square \\
\operatorname{maj}(21)=1 & \operatorname{maj}(132)=\square \quad \operatorname{maj}(231)=\square & \operatorname{maj}(321)=\square
\end{array}
$$

$n \backslash m$	0	1	2	3	4	5	6
1	1						
2	1	1					
3	1	2	2	1			
4	1	3	5	6	5	3	1

What are the possible values for $\operatorname{maj}(\pi)$?
The distribution of $\operatorname{maj}(\pi)$ IS THE SAME AS the distribution of $\operatorname{inv}(\pi)$!
A statistic that has the same distribution as inv is called Mahonian.

q-analogs

Definition: A q-analog of a number c is an expression $f(q)$ such that $\lim _{q \rightarrow 1} f(q)=c$.
Example. $\frac{1-q^{n}}{1-q}=\left(1+q+q^{2}+\cdots+q^{n-2}+q^{n-1}\right)$ is a q-analog of n because $\lim _{q \rightarrow 1} \frac{1-q^{n}}{1-q}=n$.

q-analogs

Definition: A q-analog of a number c is an expression $f(q)$ such that $\lim _{q \rightarrow 1} f(q)=c$.
Example. $\frac{1-q^{n}}{1-q}=\left(1+q+q^{2}+\cdots+q^{n-2}+q^{n-1}\right)$ is a q-analog of n because $\lim _{q \rightarrow 1} \frac{1-q^{n}}{1-q}=n$.
We write $[n]_{q}=\frac{1-q^{n}}{1-q}$.

q-analogs

Definition: A q-analog of a number c is an expression $f(q)$ such that $\lim _{q \rightarrow 1} f(q)=c$.
Example. $\frac{1-q^{n}}{1-q}=\left(1+q+q^{2}+\cdots+q^{n-2}+q^{n-1}\right)$ is a
q-analog of n because $\lim _{q \rightarrow 1} \frac{1-q^{n}}{1-q}=n$.
We write $[n]_{q}=\frac{1-q^{n}}{1-q}$.
q-analogs work hand in hand with combinatorial statistics.
If stat is a combinatorial statistic on a set $S($ stat $: S \mapsto \mathbb{N})$, then $\sum_{s \in S} q^{\text {stat(s) }}$ is a q-analog of $|S|$

q-analogs

Definition: A q-analog of a number c is an expression $f(q)$ such that $\lim _{q \rightarrow 1} f(q)=c$.
Example. $\frac{1-q^{n}}{1-q}=\left(1+q+q^{2}+\cdots+q^{n-2}+q^{n-1}\right)$ is a
q-analog of n because $\lim _{q \rightarrow 1} \frac{1-q^{n}}{1-q}=n$.
We write $[n]_{q}=\frac{1-q^{n}}{1-q}$.
q-analogs work hand in hand with combinatorial statistics.
If stat is a combinatorial statistic on a set $S($ stat : $S \mapsto \mathbb{N})$, then $\sum_{s \in S} q^{\text {stat(s) }}$ is a q-analog of $|S|$ because

$$
\lim _{q \rightarrow 1} \sum_{s \in S} q^{\operatorname{stat}(s)}=\sum_{s \in S} 1^{\operatorname{stat}(s)}=\sum_{s \in S} 1=|S|
$$

Inversion statistics

Question: What is the generating function $\sum_{\pi \in S_{n}} q^{\operatorname{inv}(\pi)}$?

Inversion statistics

Question: What is the generating function $\sum_{\pi \in S_{n}} q^{\operatorname{inv}(\pi)}$?

n	$\sum_{\pi \in S_{n}} q^{\operatorname{inv}(\pi)}$	
1	$1 q^{0}$	$=1$
2	$1 q^{0}+1 q^{1}$	$=(1+q)$
3	$1 q^{0}+2 q^{1}+2 q^{2}+1 q^{3}$	$=\left(1+q+q^{2}\right)(1+q)$
4	$1 q^{0}+3 q^{1}+5 q^{2}+6 q^{3}+5 q^{4}+3 q^{5}+1 q^{6}=$	

Inversion statistics

Question: What is the generating function $\sum_{\pi \in S_{n}} q^{\operatorname{inv}(\pi)}$?

n	$\sum_{\pi \in S_{n}} q^{\operatorname{inv}(\pi)}$	
1	$1 q^{0}$	$=1$
2	$1 q^{0}+1 q^{1}$	$=(1+q)$
3	$1 q^{0}+2 q^{1}+2 q^{2}+1 q^{3}$	$=\left(1+q+q^{2}\right)(1+q)$
4	$1 q^{0}+3 q^{1}+5 q^{2}+6 q^{3}+5 q^{4}+3 q^{5}+1 q^{6}=$	

Conjecture: $\sum_{\pi \in S_{n}} q^{\operatorname{inv}(\pi)}=$

Inversion statistics

Question: What is the generating function $\sum_{\pi \in S_{n}} q^{\operatorname{inv}(\pi)}$?

n	$\sum_{\pi \in S_{n}} q^{\operatorname{inv}(\pi)}$	
1	$1 q^{0}$	$=1$
2	$1 q^{0}+1 q^{1}$	$=(1+q)$
3	$1 q^{0}+2 q^{1}+2 q^{2}+1 q^{3}$	$=\left(1+q+q^{2}\right)(1+q)$
4	$1 q^{0}+3 q^{1}+5 q^{2}+6 q^{3}+5 q^{4}+3 q^{5}+1 q^{6}=$	

Conjecture: $\sum_{\pi \in S_{n}} q^{\operatorname{inv}(\pi)}=[n]_{q} \cdots[1]_{q}=:[n]_{q}$!, the q-factorial.

Inversion statistics

Question: What is the generating function $\sum_{\pi \in S_{n}} q^{\mathrm{inv}(\pi)}$?

n	$\sum_{\pi \in S_{n}} q^{\operatorname{inv}(\pi)}$	
1	$1 q^{0}$	$=1$
2	$1 q^{0}+1 q^{1}$	$=(1+q)$
3	$1 q^{0}+2 q^{1}+2 q^{2}+1 q^{3}$	$=\left(1+q+q^{2}\right)(1+q)$
4	$1 q^{0}+3 q^{1}+5 q^{2}+6 q^{3}+5 q^{4}+3 q^{5}+1 q^{6}=$	

Conjecture: $\sum_{\pi \in S_{n}} q^{\operatorname{inv}(\pi)}=[n]_{q} \cdots[1]_{q}=:[n]_{q}$!, the q-factorial.
Claim: This equation makes sense when $q=1$.

Inversion Statistics

Theorem: $\sum_{\pi \in S_{n}} q^{\operatorname{inv}(\pi)}=[n]_{q}$!
Proof. There exists a bijection

$$
\left\{\begin{array}{c}
\text { permutations } \\
\pi \in S_{n}
\end{array}\right\} \longleftrightarrow\left\{\begin{array}{c}
\text { lists }\left(a_{1}, \ldots, a_{n}\right) \\
\text { where } 0 \leq a_{i} \leq n-i
\end{array}\right\}
$$

Inversion Statistics

Theorem: $\sum_{\pi \in S_{n}} q^{\operatorname{inv}(\pi)}=[n]_{q}$!
Proof. There exists a bijection

$$
\left\{\begin{array}{c}
\text { permutations } \\
\pi \in S_{n}
\end{array}\right\} \longleftrightarrow\left\{\begin{array}{c}
\text { lists }\left(a_{1}, \ldots, a_{n}\right) \\
\text { where } 0 \leq a_{i} \leq n-i
\end{array}\right\}
$$

Given a permutation π, create its inversion table. Define a_{i} to be the number of entries j to the left of i that are smaller than i.
Then $\operatorname{inv}(\pi)=a_{1}+a_{2}+\cdots+a_{n}$.

Inversion Statistics

$$
\text { Theorem: } \sum_{\pi \in S_{n}} q^{\operatorname{inv}(\pi)}=[n]_{q} \text { ! }
$$

Proof. There exists a bijection

$$
\left\{\begin{array}{c}
\text { permutations } \\
\pi \in S_{n}
\end{array}\right\} \longleftrightarrow\left\{\begin{array}{c}
\text { lists }\left(a_{1}, \ldots, a_{n}\right) \\
\text { where } 0 \leq a_{i} \leq n-i
\end{array}\right\}
$$

Given a permutation π, create its inversion table. Define a_{i} to be the number of entries j to the left of i that are smaller than i.
Then $\operatorname{inv}(\pi)=a_{1}+a_{2}+\cdots+a_{n}$.
Example. The inversion table of $\pi=43152$ is $(3,2,0,1,0)$.

Inversion Statistics

Theorem: $\sum_{\pi \in S_{n}} q^{\operatorname{inv}(\pi)}=[n]_{q}$!

Proof. There exists a bijection

$$
\left\{\begin{array}{c}
\text { permutations } \\
\pi \in S_{n}
\end{array}\right\} \longleftrightarrow\left\{\begin{array}{c}
\text { lists }\left(a_{1}, \ldots, a_{n}\right) \\
\text { where } 0 \leq a_{i} \leq n-i
\end{array}\right\}
$$

Given a permutation π, create its inversion table. Define a_{i} to be the number of entries j to the left of i that are smaller than i.
Then $\operatorname{inv}(\pi)=a_{1}+a_{2}+\cdots+a_{n}$.
Example. The inversion table of $\pi=43152$ is $(3,2,0,1,0)$.

$$
\begin{aligned}
\sum_{\pi \in S_{n}} q^{i n v(\pi)} & =\sum_{a_{1}=0}^{n-1} \sum_{a_{2}=0}^{n-2} \cdots \sum_{a_{n}=0}^{0} q^{a_{1}+a_{2}+\cdots+a_{n}} \\
& =\left(\sum_{a_{1}=0}^{n-1} q^{a_{1}}\right)\left(\sum_{a_{2}=0}^{n-2} q^{a_{2}}\right) \cdots\left(\sum_{a_{n}=0}^{0} q^{a_{n}}\right) \\
& =\quad[n]_{q} \quad[n-1]_{q} \cdots \quad[1]_{q}=[n]_{q}!
\end{aligned}
$$

Notes

We said that inv and maj are equidistributed. Two possible proofs:

- Find a bijection $f: S_{n} \rightarrow S_{n}$ such that $\operatorname{maj}(\pi)=\operatorname{inv}(f(\pi))$.
- Or prove $\sum_{\pi \in S_{n}} q^{\operatorname{inv}(\pi)}=\sum_{\pi \in S_{n}} q^{\operatorname{maj}(\pi)}$.

Notes

We said that inv and maj are equidistributed. Two possible proofs:

- Find a bijection $f: S_{n} \rightarrow S_{n}$ such that $\operatorname{maj}(\pi)=\operatorname{inv}(f(\pi))$.
- Or prove $\sum_{\pi \in S_{n}} q^{\operatorname{inv}(\pi)}=\sum_{\pi \in S_{n}} q^{\operatorname{maj}(\pi)}$.

With a q-analog of factorials, we can define a q-analog of binomial coefficients. Define

$$
\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q}=\frac{[n]_{q}!}{[k]_{q}![n-k]_{q}!} .
$$

These polynomials are called the q-binomial coefficients or Gaussian polynomials.

Notes

We said that inv and maj are equidistributed. Two possible proofs:

- Find a bijection $f: S_{n} \rightarrow S_{n}$ such that $\operatorname{maj}(\pi)=\operatorname{inv}(f(\pi))$.
- Or prove $\sum_{\pi \in S_{n}} q^{\operatorname{inv}(\pi)}=\sum_{\pi \in S_{n}} q^{\operatorname{maj}(\pi)}$.

With a q-analog of factorials, we can define a q-analog of binomial coefficients. Define

$$
\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q}=\frac{[n]_{q}!}{[k]_{q}![n-k]_{q}!} .
$$

These polynomials are called the q-binomial coefficients or Gaussian polynomials.
$-\lim _{q \rightarrow 1}\left[\begin{array}{c}n \\ k\end{array}\right]_{q}=\binom{n}{k}$.

Notes

We said that inv and maj are equidistributed. Two possible proofs:

- Find a bijection $f: S_{n} \rightarrow S_{n}$ such that $\operatorname{maj}(\pi)=\operatorname{inv}(f(\pi))$.
- Or prove $\sum_{\pi \in S_{n}} q^{\operatorname{inv}(\pi)}=\sum_{\pi \in S_{n}} q^{\operatorname{maj}(\pi)}$.

With a q-analog of factorials, we can define a q-analog of binomial coefficients. Define

$$
\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q}=\frac{[n]_{q}!}{[k]_{q}![n-k]_{q}!} .
$$

These polynomials are called the q-binomial coefficients or Gaussian polynomials.
$-\lim _{q \rightarrow 1}\left[\begin{array}{l}n \\ k\end{array}\right]_{q}=\binom{n}{k}$.

- They are indeed polynomials.
- Example. $\left[\begin{array}{l}4 \\ 2\end{array}\right]_{q}=1+q+2 q^{2}+q^{3}+q^{4}$

Notes

We said that inv and maj are equidistributed. Two possible proofs:

- Find a bijection $f: S_{n} \rightarrow S_{n}$ such that $\operatorname{maj}(\pi)=\operatorname{inv}(f(\pi))$.
- Or prove $\sum_{\pi \in S_{n}} q^{\operatorname{inv}(\pi)}=\sum_{\pi \in S_{n}} q^{\operatorname{maj}(\pi)}$.

With a q-analog of factorials, we can define a q-analog of binomial coefficients. Define

$$
\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q}=\frac{[n]_{q}!}{[k]_{q}![n-k]_{q}!}
$$

These polynomials are called the q-binomial coefficients or Gaussian polynomials.
$-\lim _{q \rightarrow 1}\left[\begin{array}{l}n \\ k\end{array}\right]_{q}=\binom{n}{k}$.

- They are indeed polynomials.
- Example. $\left[\begin{array}{l}4 \\ 2\end{array}\right]_{q}=1+q+2 q^{2}+q^{3}+q^{4}$

Combinatorial interpretations of q-binomial coefficients!

Combinatorial interpretations of q-binomial coefficients

Consider set $S_{k, n-k}$ of permutations of the multiset $\left\{1^{k}, 2^{n-k}\right\}$. Define $\operatorname{inv}(\pi)=|\{i<j: \pi(i)>\pi(j)\}|$.
Example. $\pi=1122121122$ is a permutation of $\left\{1^{5}, 2^{5}\right\}$. Then $\operatorname{inv}(\pi)=0+0+3+3+0+2+0+0+0+0=8$.

Combinatorial interpretations of q-binomial coefficients

Consider set $S_{k, n-k}$ of permutations of the multiset $\left\{1^{k}, 2^{n-k}\right\}$. Define $\operatorname{inv}(\pi)=|\{i<j: \pi(i)>\pi(j)\}|$.

Example. $\pi=1122121122$ is a permutation of $\left\{1^{5}, 2^{5}\right\}$. Then $\operatorname{inv}(\pi)=0+0+3+3+0+2+0+0+0+0=8$.
Then $\sum_{\pi \in S_{k, n-k}} q^{\operatorname{inv}(\pi)}=\left[\begin{array}{l}n \\ k\end{array}\right]_{q}$. $\left(\right.$ Note $\left.\left|S_{k, n-k}\right|=\binom{n}{k}.\right)$
This is a refinement of these permutations in terms of inversions.

Combinatorial interpretations of q-binomial coefficients

Consider set $S_{k, n-k}$ of permutations of the multiset $\left\{1^{k}, 2^{n-k}\right\}$. Define $\operatorname{inv}(\pi)=|\{i<j: \pi(i)>\pi(j)\}|$.
Example. $\pi=1122121122$ is a permutation of $\left\{1^{5}, 2^{5}\right\}$. Then $\operatorname{inv}(\pi)=0+0+3+3+0+2+0+0+0+0=8$.
Then $\sum_{\pi \in S_{k, n-k}} q^{\operatorname{inv}(\pi)}=\left[\begin{array}{l}n \\ k\end{array}\right]_{q} .\left(\right.$ Note $\left.\left|S_{k, n-k}\right|=\binom{n}{k}.\right)$
This is a refinement of these permutations in terms of inversions.

Consider the set \mathcal{P} of lattice paths from $(0,0)$ to (a, b).

Combinatorial interpretations of q-binomial coefficients

Consider set $S_{k, n-k}$ of permutations of the multiset $\left\{1^{k}, 2^{n-k}\right\}$. Define $\operatorname{inv}(\pi)=|\{i<j: \pi(i)>\pi(j)\}|$.
Example. $\pi=1122121122$ is a permutation of $\left\{1^{5}, 2^{5}\right\}$. Then $\operatorname{inv}(\pi)=0+0+3+3+0+2+0+0+0+0=8$.
Then $\sum_{\pi \in S_{k, n-k}} q^{\operatorname{inv}(\pi)}=\left[\begin{array}{l}n \\ k\end{array}\right]_{q} .\left(\right.$ Note $\left.\left|S_{k, n-k}\right|=\binom{n}{k}.\right)$
This is a refinement of these permutations in terms of inversions.

Consider the set \mathcal{P} of lattice paths from $(0,0)$ to (a, b). Let $\operatorname{area}(P)$ be the area above a path P.
Then $\sum_{P \in \mathcal{P}} q^{\text {area }(P)}=\left[\begin{array}{c}a+b \\ a\end{array}\right]_{q} .\left(\right.$ Note $\left.|\mathcal{P}|=\binom{a+b}{a}.\right)$

Combinatorial interpretations of q-binomial coefficients

Consider set $S_{k, n-k}$ of permutations of the multiset $\left\{1^{k}, 2^{n-k}\right\}$. Define $\operatorname{inv}(\pi)=|\{i<j: \pi(i)>\pi(j)\}|$.
Example. $\pi=1122121122$ is a permutation of $\left\{1^{5}, 2^{5}\right\}$. Then $\operatorname{inv}(\pi)=0+0+3+3+0+2+0+0+0+0=8$.
Then $\sum_{\pi \in S_{k, n-k}} q^{\operatorname{inv}(\pi)}=\left[\begin{array}{l}n \\ k\end{array}\right]_{q} .\left(\right.$ Note $\left.\left|S_{k, n-k}\right|=\binom{n}{k}.\right)$
This is a refinement of these permutations in terms of inversions.

Consider the set \mathcal{P} of lattice paths from $(0,0)$ to (a, b).
Let $\operatorname{area}(P)$ be the area above a path P.
Then $\sum_{P \in \mathcal{P}} q^{\text {area }(P)}=\left[\begin{array}{c}a+b \\ a\end{array}\right]_{q} .\left(\right.$ Note $\left.|\mathcal{P}|=\binom{a+b}{a}.\right)$

This can also be used to give a q-analog of the Catalan numbers.

There's always more to learn!!!

References:

© Miklós Bóna. Combinatorics of Permutations, CRC, 2004.
图 T. Kyle Petersen. Two-sided Eulerian numbers via balls in boxes. http://arxiv.org/abs/1209.6273
囦 The Combinatorial Statistic Finder. http://findstat.org/

